Name: _____

COMPLETING THE SQUARE COMMON CORE ALGEBRA I

The turning point of a parabola and its general shape are relatively easy to determine if the quadratic function is written in its **shifted or vertex form**. Review this in the first exercise.

Exercise #1: Given the function $y = (x-3)^2 + 2$ do the following.

(a) Give the coordinates of the turning point. (b) Determine the range by drawing a rough sketch.

The question then is how we take a quadratic of the form $y = ax^2 + bx + c$ and put it into its shifted form. This procedure is known as **Completing the Square**. But, it needs some additional review.

Exercise #2: Write each of the following as an equivalent trinomial.

(a)
$$(x+5)^2$$
 (b) $(x-1)^2$ (c) $(x+4)^2$

Exercise #3: Given each trinomial in Exercise #2 of the form $x^2 + bx + c$, what is true about the relationship between the value of *b* and the value of *c*? Illustrate.

Exercise #4: Each of the following trinomials is a perfect square. Write it in factored (or perfect square) form.

(a)
$$x^2 + 20x + 100$$
 (b) $x^2 - 6x + 9$ (c) $x^2 + 2x + 1$

We are finally ready to learn the method of **Completing the Square**. This method has many uses, but the one we will work with today is to manipulate equations of quadratics from their **standard form** to their **vertex form**.

Exercise #5: The quadratic $y = x^2 - 4x - 1$ is shown graphed below.

- (a) Consider only the binomial $x^2 4x$. What would you need to add on to it to create a perfect square trinomial? (See Exercise #3).
- (b) In order to add zero to the binomial $x^2 4x$, what should we subtract to offset adding 4 to make it a perfect square?

(c) Use the Method of Competing the Square now to rewrite the trinomial $x^2 - 4x - 1$ in an equivalent, shifted form. According to this form, what are the coordinates of the vertex? Verify by examining the graph.

This procedure is what is known as an **algorithm**. In other words, we follow a recipe. Here it is:

COMPLETING THE SQUARE								
For the quadratic $y = x^2 + bx + c$ (note that $a = 1$).								
1. Find half of the value of <i>b</i> , i.e. $\frac{b}{2}$	2. Square it, i.e. $\left(\frac{b}{2}\right)^2$	3. Add and subtract it						

There is nothing like practice on these.

Exercise #6: Write each quadratic in vertex form by Completing the Square. Then, identify the quadratic's turning point. The last two problems will involve fractions. Stick with it!

(a) $y = x^2 + 6x - 2$ (b) $y = x^2 - 2x + 11$ (c) $y = x^2 - 10x + 27$

(d)
$$y = x^2 + 8x$$
 (e) $y = x^2 + 5x + 4$ (f) $y = x^2 - 9x - 2$

COMPLETING THE SQUARE COMMON CORE ALGEBRA I HOMEWORK

FLUENCY

- 1. Find each of the following products in standard form.
 - (a) $(x+4)^2$ (b) $(x-1)^2$ (c) $(x+8)^2$

(d)
$$(x-7)^2$$
 (e) $(x+2)^2$ (f) $(x-10)^2$

- 2. Each of the following trinomials is a perfect square. Write it in factored form, i.e. $(x+a)^2$ or $(x-a)^2$.
 - (a) $x^2 + 6x + 9$ (b) $x^2 22x + 121$ (c) $x^2 + 10x + 25$

(d)
$$x^2 + 30x + 225$$
 (e) $x^2 - 2x + 1$ (f) $x^2 - 18x + 81$

- 3. Place each of the following quadratic functions, written in standard form, into vertex form by completing the square. Then, identify the coordinates of its turning point.
 - (a) $y = x^2 12x + 40$ (b) $y = x^2 + 4x + 14$ (c) $y = x^2 24x + 146$

APPLICATIONS

4. A cable is attached at the same height from two poles and hangs between them such that its height above the ground, *y*, in inches, can be modeled using the equation:

$$y = x^2 - 16x + 67$$

where x represents the horizontal distance from the left pole, in feet.

- (a) What height is point A above the ground? Show your work and use proper units.
- (b) Write the equation in vertex form.

(c) What is the difference in the heights of points

A and B? Show your analysis and include

(d) What is the horizontal distance that separates points A and C? Explain your reasoning.

REASONING

units.

5. Use the vertex form of each of the following quadratic functions to determine which has the lowest y-value.

$$y = x^2 - 8x + 6$$
 $y = x^2 + 6x + 1$

6. Two quadratic functions are shown below, f(x) and g(x). Determine which has the lower minimum value. Explain how you arrived at your answer.

$f(x) = x^2 + 10x$	X	3	4	5	6	7	8	9
	g(x)	-9	-14	-17	-18	-17	-14	-9

