\qquad

Completing the Square Common Core Algebra I

The turning point of a parabola and its general shape are relatively easy to determine if the quadratic function is written in its shifted or vertex form. Review this in the first exercise.

Exercise \#1: Given the function $y=(x-3)^{2}+2$ do the following.
(a) Give the coordinates of the turning point.
(b) Determine the range by drawing a rough sketch.

The question then is how we take a quadratic of the form $y=a x^{2}+b x+c$ and put it into its shifted form. This procedure is known as Completing the Square. But, it needs some additional review.

Exercise \#2: Write each of the following as an equivalent trinomial.
(a) $(x+5)^{2}$
(b) $(x-1)^{2}$
(c) $(x+4)^{2}$

Exercise \#3: Given each trinomial in Exercise \#2 of the form $x^{2}+b x+c$, what is true about the relationship between the value of b and the value of c ? Illustrate.

Exercise \#4: Each of the following trinomials is a perfect square. Write it in factored (or perfect square) form.
(a) $x^{2}+20 x+100$
(b) $x^{2}-6 x+9$
(c) $x^{2}+2 x+1$

We are finally ready to learn the method of Completing the Square. This method has many uses, but the one we will work with today is to manipulate equations of quadratics from their standard form to their vertex form.

Exercise \#5: The quadratic $y=x^{2}-4 x-1$ is shown graphed below.
(a) Consider only the binomial $x^{2}-4 x$. What would you need to add on to it to create a perfect square trinomial? (See Exercise \#3).
(b) In order to add zero to the binomial $x^{2}-4 x$, what should we subtract to offset adding 4 to make it a perfect square?

(c) Use the Method of Competing the Square now to rewrite the trinomial $x^{2}-4 x-1$ in an equivalent, shifted form. According to this form, what are the coordinates of the vertex? Verify by examining the graph.

This procedure is what is known as an algorithm. In other words, we follow a recipe. Here it is:

Completing the Square

For the quadratic $y=x^{2}+b x+c$ (note that $a=1$).

1. Find half of the value of b, i.e. $\frac{b}{2} \quad$ 2. Square it, i.e. $\left(\frac{b}{2}\right)^{2} \quad$ 3. Add and subtract it

There is nothing like practice on these.
Exercise \#6: Write each quadratic in vertex form by Completing the Square. Then, identify the quadratic's turning point. The last two problems will involve fractions. Stick with it!
(a) $y=x^{2}+6 x-2$
(b) $y=x^{2}-2 x+11$
(c) $y=x^{2}-10 x+27$
(d) $y=x^{2}+8 x$
(e) $y=x^{2}+5 x+4$
(f) $y=x^{2}-9 x-2$
\qquad

COMPLETING THE SQUARE Common Core Algebra I Homework

FLUENCY

1. Find each of the following products in standard form.
(a) $(x+4)^{2}$
(b) $(x-1)^{2}$
(c) $(x+8)^{2}$
(d) $(x-7)^{2}$
(e) $(x+2)^{2}$
(f) $(x-10)^{2}$
2. Each of the following trinomials is a perfect square. Write it in factored form, i.e. $(x+a)^{2}$ or $(x-a)^{2}$.
(a) $x^{2}+6 x+9$
(b) $x^{2}-22 x+121$
(c) $x^{2}+10 x+25$
(d) $x^{2}+30 x+225$
(e) $x^{2}-2 x+1$
(f) $x^{2}-18 x+81$
3. Place each of the following quadratic functions, written in standard form, into vertex form by completing the square. Then, identify the coordinates of its turning point.
(a) $y=x^{2}-12 x+40$
(b) $y=x^{2}+4 x+14$
(c) $y=x^{2}-24 x+146$

Applications

4. A cable is attached at the same height from two poles and hangs between them such that its height above the ground, y, in inches, can be modeled using the equation:

$$
y=x^{2}-16 x+67
$$

where x represents the horizontal distance from the left pole, in feet.
(a) What height is point A above the ground? Show your work and use proper units.
(b) Write the equation in vertex form.

(c) What is the difference in the heights of points A and B? Show your analysis and include units.
(d) What is the horizontal distance that separates points A and C? Explain your reasoning.

REASONING

5. Use the vertex form of each of the following quadratic functions to determine which has the lowest y-value.

$$
y=x^{2}-8 x+6 \quad y=x^{2}+6 x+1
$$

6. Two quadratic functions are shown below, $f(x)$ and $g(x)$. Determine which has the lower minimum value. Explain how you arrived at your answer.

$$
f(x)=x^{2}+10 x
$$

x	3	4	5	6	7	8	9
$g(x)$	-9	-14	-17	-18	-17	-14	-9

