\qquad

FACTORING BINOMIALS N-GEN MATH ${ }^{\circledR} 7$

In the last few lessons we have worked a lot with the distributive property to rewrite the product of a constant and an algebraic binomial. In this lesson we will look at reversing this process in order to write a binomial in its factored form. First let's review the distributive property.

Exercise \#1: Write each of the following products in simplest binomial form. Show your steps.
(a) $5(4 x+3)$
(b) $7(3 x+1)$
(c) $2(6 x-5)$

What we want to do in this lesson is to reverse this process and write a binomial as a product. To do this we need to be able to identify common factors of the constants of the binomial.

Exercise \#2: Consider the binomial $6 x+18$. The two constants are 6 and 18 .
(a) Write both 6 and 18 as products in as many ways as possible (factor them). Circle any common factors and then list the common factors (do not include 1 as a common factor).

Factorizations of 6:
Factorizations of 18:
Common Factors:
(b) You should have found three common factors besides 1 . Rewrite the binomial $6 x+18$ as an equivalent product of the three and another binomial. One example is done for you below. Do the other two.

Common Factor of 2: $\quad 6 x+18=\mathbf{2} \cdot 3 x+\mathbf{2} \cdot 9=\mathbf{2}(3 x+9)$
Common Factor of \qquad : $6 x+18=$ \qquad
Common Factor of \qquad : $6 x+18=$ \qquad
(c) Which of the three factorizations of $6 x+18$ involved the greatest common factor?

We can often write binomials in factored forms many different ways. We can always check to see if they are correct by using the distributive property.

Exercise \#3: Consider the binomial $8 n+12$. One of the factorizations of the binomial below is incorrect (not equivalent). Determine which one and show how you know it is not equivalent.
I. $4(2 n+3)$
II. $2(4 n+6)$
III. $8(n+4)$

Sometimes we want to write a binomial as the product of the greatest common factor (gcf) of the binomial along with another binomial. This is known as factoring the gef "out" of a binomial.

Exercise \#4: For each of the following binomials, identify its gcf and then write it as the product of its gcf with another binomial.
(a) $10 x+15$
$\mathrm{gcf}=$ \qquad
(b) $7 y+28$
(c) $18 n-30$
factored form:
$\mathrm{gcf}=$ \qquad
factored form:
factored form:
(d) $\begin{aligned} & 2 W+2 L \\ & \text { gcf }= \\ & \end{aligned}$
factored form:
(e) $6 x-3 y$
$\mathrm{gcf}=$ \qquad
factored form:
(g) $24 n+12$
\qquad
factored form:
(h) $63 c+18 d$
$\mathrm{gcf}=$
factored form:
(f) $16 w+40 x$
$\mathrm{gcf}=$ \qquad
factored form:
(i) $5 x+5$
$\mathrm{gcf}=$ \qquad
factored form:
\qquad

FACTORING BINOMIALS N-GEN MATH ${ }^{\circledR} 7$ HOMEWORK

Fluency

1. Which of the following is not a common factor of the numbers 18 and 42 ?
(1) 6
(3) 3
(2) 2
(4) 7
2. Which of the following is not a correct factorization of the binomial $12 x+30$?
(1) $2(6 x+15)$
(3) $12(x+18)$
(2) $3(4 x+10)$
(4) $6(2 x+5)$
3. If the binomial $8 n+20$ was written as an equivalent product of its greatest common factor and another binomial, which of the following would be the binomial in the product?
(1) $2 n+5$
(3) $n+12$
(2) $5 n+7$
(4) $4 n+10$
4. For each of the following binomials, identify its gcf and then write it as the product of its gcf with another binomial.
(a) $6 x+30$
(b) $14 n+49$
(c) $16 y-8$
$\mathrm{gcf}=$ \qquad
factored form:

$$
\mathrm{gcf}=
$$

factored form:

$$
\mathrm{gcf}=
$$

\qquad factored form:
5. Write each of the following binomials as the product of its gcf with another binomial.
(a) $8 x+24$
(b) $10 w-5$
(c) $2 n+16$
(d) $6 y+21$
(e) $44 x+55$
(f) $28 e-7$
(g) $6 x+42 y$
(h) $18 m-45 n$
(i) $20 c-8 d$

Using Your Math

6. The area of a rectangle is given by the expression $10 n+35$, in square feet. Its width is 5 feet as shown. Its length is an unknown expression in terms of the variable n.
(a) Write the area of the rectangle as the product of 5 and another binomial.

5 ft

$$
\text { Area }=10 n+35
$$

(b) Explain why the binomial you wrote in (a) must be the length of the rectangle.
(c) Test to see if $10 n+35$ and your answer in (a) are equivalent by substituting $n=2$ into both. Show your substitution and calculations.
$10 n+35$:
Expression from (a):

