\qquad Date: \qquad

EQUIVALENT EXPRESSIONS - DAY 2
 N-GEN MATH ${ }^{\circledR} 7$

It will be important to be able to manipulate algebraic expressions using the properties of numbers to produce equivalent expressions. In the last lesson we saw how to use the commutative and associative properties of addition and multiplication. In this lesson we will concentrate on the distributive property.

The Distributive Property

If a, b, and c are any numbers then: $a \cdot(b+c)=a \cdot b+a \cdot c$ and $a \cdot(b-c)=a \cdot b-a \cdot c$.

Exercise \#1: Calculate the product $2(37)$ in two different ways using the distributive property.
(a) $2(30+7)=$
(b) $2(40-3)=$

The distributive property is often used when variables are involved.
Exercise \#2: Consider the expression $2(x+7)$.
(a) Write an equivalent expression using the distributive property. Show your steps.
(b) Test the original expression and the one from (a) using $x=3$. Show the substitution. Original: Expression from (a):

A distributive property manipulation is slightly more difficult if the coefficient on the variable is not equal to one.

Exercise \#3: Consider the expression $5(3 x+4)$. Justify each of the following steps using a property.

$$
5(3 x+4)=5(3 x)+5(4)
$$

$$
5(3 x)+5(4)=(5 \cdot 3) x+20=15 x+20
$$

Property: \qquad Property: \qquad

It is critical that you get good at using the distributive property because it will arise in many of the lessons that you see.

Exercise \#4: Rewrite each of these expressions using the distributive property. Show the steps in your manipulation. Write all fractions in simplified form.
(a) $3(4 x+7)$
(b) $8(3 x-2)$
(c) $-2(4 x+1)$
(d) $\frac{3}{2}(4 x+10)$
(e) $-4(-5 x+7)$
(f) $\frac{1}{3}(9 x-6)$

Let's look at an additional case that we didn't see in Exercise \#4 that involves negatives and subtraction.

Exercise \#5: Consider the expression $-3(5 x-8)$.
(a) Rewrite the expression so that the difference in the parentheses is a sum instead.
(b) Use the distributive property on (b) to simplify the expression.

What we see is that when we multiply difference by a negative number, it becomes a sum.
Exercise \#6: Use what you learned in Exercise \#5 to rewrite each of the following.
(a) $-2(4 x-5)$
(b) $-7(3 x-4)$
(c) $-5(-2 x-11)$
\qquad

EQUIVALENT EXPRESSIONS - DAY 2
 N-GEN MATH ${ }^{\circledR} 7$ HOMEWORK

Fluency

1. The expression $7(x+3)$ is equivalent to which of the following?
(1) $7 x+3$
(3) $x+21$
(2) $7 x+10$
(4) $7 x+21$
2. If the binomial $2 x+8$ was multiplied by 5 the result would be equivalent to
(1) $10 x+40$
(3) $7 x+13$
(2) $2 x+13$
(4) $10 x+8$
3. Find the product $5(18)$ in two ways using the distributive property:
(a) $5(10+8)=$
(b) $5(20-2)=$
4. Rewrite each of the following expressions using the distributive property.
(a) $8(x+5)$
(b) $4(y-9)$
(c) $-6(n+3)$
(d) $7(x+1)$
(e) $-10(x-3)$
(f) $\frac{2}{3}(6 x+3)$
5. Rewrite each of the following expressions using the distributive property.
(a) $3(4 x+7)$
(b) $11(8 x-3)$
(c) $-5(3 x+2)$
(d) $-12(-2 x+5)$
(e) $\frac{5}{4}(8 x-20)$
(f) $-3(5 x-2)$
(g) $\frac{7}{5}(10 x+5)$
(h) $-9(-5 x-3)$
(i) $\frac{5}{6}(12 x-42)$
6. Patrick is manipulating the expression: $5(2 x-3)$. He does the following steps.

Step \#1: $5(2 x)-5(3)$
Step \#2: $(5 \cdot 2) x-5(3)$
Step \#3: $10 x-15$
(a) Write the properties that Patrick uses in Step \#1 and Step \#2 on the blanks provided.
(b) Test the equivalency of these two expressions for $x=4$. Show the substitution for both.

$$
5(2 x-3) \quad 10 x-15
$$

