\qquad

Arithmetic and Geometric Sequences
 Algebra 2 With Trigonometry

There are many important types of sequences in mathematics, but the two most prominent are arithmetic and geometric. We will begin by defining the arithmetic sequence using a recursive definition.

Arithmetic Sequence Recursive Definition

Given a_{1}, then $a_{n}=a_{n-1}+d$
where d is called the common difference and can be positive or negative.

Exercise \#1: Generate the next three terms of the given arithmetic sequences.
(a) $a_{n}=a_{n-1}+6$ with $a_{1}=2$
(b) $a_{1}=8$ and $d=-4$
(c) $t_{n+1}=t_{n}+1 / 2$ and $t_{1}=3 / 2$

Exercise \#2: Given that $a_{1}=-3+5 i$ and $a_{n}=a_{n-1}+(6-i)$, which of the following represents a_{4} ?
(1) $15+2 i$
(3) $9+3 i$
(2) $21+i$
(4) $3+4 i$

It is important to be able to determine a general term of an arithmetic sequence based on the value of the index variable (the subscript). The next exercise walks you through the thinking process involved.

Exercise \#3: Consider $a_{n}=a_{n-1}+3$ with $a_{1}=5$.
(a) Determine the value of a_{2}, a_{3}, and a_{4}.
(b) How many times was 3 added to 5 in order to produce a_{4} ?
(c) Use your result from part (b) to quickly find the value of a_{50}.
(d) Write a formula for the $n^{\text {th }}$ term of an arithmetic sequence, a_{n}, based on the first term, a_{1}, d and n.

Exercise \#4: Given that $a_{1}=6$ and $a_{4}=18$ are members of an arithmetic sequence, determine the value of a_{2} and a_{20}.

Geometric sequences are defined very similarly to arithmetic, but with a multiplicative constant instead of an additive one.

Geometric Sequence Recursive Definition

Given a_{1}, then $a_{n}=a_{n-1} \cdot r$
where r is called the common ratio and can be positive or negative and is often fractional.
Exercise \#5: Generate the next three terms of the geometric sequences given below.
(a) $a_{1}=4$ and $r=2$
(b) $a_{n}=a_{n-1} \cdot 1 / 3$ with $a_{1}=9$
(c) $t_{n}=t_{n-1} \cdot \sqrt{2}$ with $t_{1}=3 \sqrt{2}$

And, like arithmetic, we also need to be able to determine any given term of an geometric sequence based on the first value, the common ratio, and the index.

Exercise \#6: Consider $a_{1}=2$ and $a_{n}=a_{n-1} \cdot 3$.
(a) Generate the value of a_{4}.
(b) How many times did you need to multiply 2 by 3 in order to find a_{4}.
(c) Determine the value of a_{10}.
(d) Write a formula for the $n^{\text {th }}$ term of a geometric sequence, a_{n}, based on the first term, a_{1}, r and n.
\qquad

Arithmetic and Geometric Sequences Algebra 2 with Trigonometry - Homework

SKILLS

1. Generate the next three terms of each arithmetic sequence shown below.
(a) $a_{1}=-2$ and $d=4$
(b) $a_{n}=a_{n-1}-8$ with $a_{1}=10$
(c) $a_{1}=4+2 i$ and $a_{n}=a_{n-1}-2+3 i$
2. In an arithmetic sequence $t_{n}=t_{n-1}+7$. If $t_{1}=-5$ determine the values of t_{4} and t_{20}. Show the calculations that lead to your answers.
3. If $a_{1}=12$ and $a_{n}=a_{n-1}-4$ then which of the following represents the value of a_{40} ?
(1) -148
(3) -144
(2) -140
(4) -172
4. If $c_{1}=-5+8 i$ and $d=2-3 i$ defines an arithmetic sequence of complex numbers then $c_{11}=$?
(1) $15-22 i$
(3) $22-33 i$
(2) $17-25 i$
(4) $-30+50 i$
5. In an arithmetic sequence of numbers $a_{1}=-4$ and $a_{6}=46$. Which of the following is the value of a_{12} ?
(1) 120
(3) 92
(2) 146
(4) 106
6. The first term of an arithmetic sequence whose common difference is 7 and whose $22^{\text {nd }}$ term is given by $a_{22}=143$ is which of the following?
(1) -25
(3) 7
(2) -4
(4) 28
7. Generate the next three terms of each geometric sequence defined below.
(a) $a_{1}=-8$ with $r=-1$
(b) $a_{n}=a_{n-1} \cdot 3 / 2$ and $a_{1}=16$
(c) $t_{n+1}=t_{n} \cdot-2$ and $t_{1}=5$
8. Given that $a_{1}=5$ and $a_{2}=15$ are the first two terms of a geometric sequence, determine the values of a_{3} and a_{10}. Show the calculations that lead to your answers.
9. If the complex geometric sequence is defined by $c_{1}=-7+4 i$ and $r=i$, where $i=\sqrt{-1}$, then which of the following is the value of c_{5} ?
(1) $7-4 i$
(3) $-7+4 i$
(2) $4-7 i$
(4) $-4+7 i$
10. In a geometric sequence, it is known that $a_{1}=-1$ and $a_{4}=64$. The value of a_{10} is
(1) $-65,536$
(3) 512
(2) 262,144
(4) -4096

Applications

11. What would result in more money on the $31^{\text {st }}$ day of the month: (1) Getting paid $\$ 100$ on the first day and an extra $\$ 100$ per day thereafter or (2) Getting paid 1 penny on the first day and having that amount double each day thereafter? Show calculations for both schemes to justify your answer.
