Name: ____

Date: _____

ARITHMETIC AND GEOMETRIC SEQUENCES ALGEBRA 2 WITH TRIGONOMETRY

There are many important types of sequences in mathematics, but the two most prominent are **arithmetic** and **geometric**. We will begin by defining the arithmetic sequence using a **recursive definition**.

ARITHMETIC SEQUENCE RECURSIVE DEFINITION

Given a_1 , then $a_n = a_{n-1} + d$

where *d* is called the **common difference** and can be positive or negative.

Exercise #1: Generate the next three terms of the given arithmetic sequences.

(a) $a_n = a_{n-1} + 6$ with $a_1 = 2$ (b) $a_1 = 8$ and d = -4 (c) $t_{n+1} = t_n + \frac{1}{2}$ and $t_1 = \frac{3}{2}$

Exercise #2: Given that $a_1 = -3 + 5i$ and $a_n = a_{n-1} + (6-i)$, which of the following represents a_4 ?

- (1) 15+2i (3) 9+3i
- (2) 21+i (4) 3+4i

It is important to be able to determine a general term of an arithmetic sequence based on the value of the index variable (the subscript). The next exercise walks you through the thinking process involved.

Exercise #3: Consider $a_n = a_{n-1} + 3$ with $a_1 = 5$.

(a) Determine the value of a_2, a_3 , and a_4 .

- (b) How many times was 3 added to 5 in order to produce a₄?
- (c) Use your result from part (b) to quickly find the value of a_{50} .
- (d) Write a formula for the n^{th} term of an arithmetic sequence, a_n , based on the first term, a_1 , d and n.

Exercise #4: Given that $a_1 = 6$ and $a_4 = 18$ are members of an arithmetic sequence, determine the value of a_2 and a_{20} .

Geometric sequences are defined very similarly to arithmetic, but with a multiplicative constant instead of an additive one.

GEOMETRIC SEQUENCE RECURSIVE DEFINITION

Given a_1 , then $a_n = a_{n-1} \cdot r$

where *r* is called the **common ratio** and can be positive or negative and is often fractional.

Exercise **#5**: Generate the next three terms of the geometric sequences given below.

(a)
$$a_1 = 4$$
 and $r = 2$ (b) $a_n = a_{n-1} \cdot \frac{1}{3}$ with $a_1 = 9$ (c) $t_n = t_{n-1} \cdot \sqrt{2}$ with $t_1 = 3\sqrt{2}$

And, like arithmetic, we also need to be able to determine any given term of an geometric sequence based on the first value, the common ratio, and the index.

Exercise #6: Consider $a_1 = 2$ and $a_n = a_{n-1} \cdot 3$.

(a) Generate the value of a_4 .

(b) How many times did you need to multiply 2 by 3 in order to find a_4 .

(c) Determine the value of a_{10} .

(d) Write a formula for the nth term of a geometric sequence, a_n, based on the first term, a₁, r and n.

ARITHMETIC AND GEOMETRIC SEQUENCES ALGEBRA 2 WITH TRIGONOMETRY - HOMEWORK

SKILLS

- 1. Generate the next **three** terms of each arithmetic sequence shown below.
 - (a) $a_1 = -2$ and d = 4 (b) $a_n = a_{n-1} 8$ with $a_1 = 10$ (c) $a_1 = 4 + 2i$ and $a_n = a_{n-1} 2 + 3i$

- 2. In an arithmetic sequence $t_n = t_{n-1} + 7$. If $t_1 = -5$ determine the values of t_4 and t_{20} . Show the calculations that lead to your answers.
- 3. If $a_1 = 12$ and $a_n = a_{n-1} 4$ then which of the following represents the value of a_{40} ?
 - (1) -148 (3) -144
 - (2) -140 (4) -172
- 4. If $c_1 = -5 + 8i$ and d = 2 3i defines an arithmetic sequence of complex numbers then $c_{11} = ?$
 - (1) 15-22i (3) 22-33i
 - (2) 17 25i (4) -30 + 50i
- 5. In an arithmetic sequence of numbers $a_1 = -4$ and $a_6 = 46$. Which of the following is the value of a_{12} ?
 - (1) 120 (3) 92
 - (2) 146 (4) 106
- 6. The first term of an arithmetic sequence whose common difference is 7 and whose 22^{nd} term is given by $a_{22} = 143$ is which of the following?
 - (1) -25 (3) 7
 - (2) -4 (4) 28

7. Generate the next **three** terms of each geometric sequence defined below.

(a)
$$a_1 = -8$$
 with $r = -1$ (b) $a_n = a_{n-1} \cdot \frac{3}{2}$ and $a_1 = 16$ (c) $t_{n+1} = t_n \cdot -2$ and $t_1 = 5$

8. Given that $a_1 = 5$ and $a_2 = 15$ are the first two terms of a geometric sequence, determine the values of a_3 and a_{10} . Show the calculations that lead to your answers.

- 9. If the complex geometric sequence is defined by $c_1 = -7 + 4i$ and r = i, where $i = \sqrt{-1}$, then which of the following is the value of c_5 ?
 - (1) 7-4i (3) -7+4i
 - (2) 4-7i (4) -4+7i

10. In a geometric sequence, it is known that $a_1 = -1$ and $a_4 = 64$. The value of a_{10} is

- (1) -65,536 (3) 512
- (2) 262,144 (4) -4096

APPLICATIONS

11. What would result in more money on the 31st day of the month: (1) Getting paid \$100 on the first day and an extra \$100 per day thereafter or (2) Getting paid 1 penny on the first day and having that amount double each day thereafter? Show calculations for both schemes to justify your answer.

