\qquad

Geometric Series

Algebra 2 with Trigonometry

Just as we can sum the terms of an arithmetic sequence to generate an arithmetic series, we can also sum the terms of a geometric sequence to generate a geometric series.

Exercise \#1: Given a geometric series defined by the recursive formula $a_{1}=3$ and $a_{n}=a_{n-1} \cdot 2$, which of the following is the value of $S_{5}=\sum_{i=1}^{5} a_{i}$?
(1) 106
(3) 93
(2) 75
(4) 35

The sum of a finite number of geometric sequence terms is less obvious than that for an arithmetic series, but can be found nonetheless. The next exercise derives the formula for finding this sum.

Exercise \#2: Recall that for a geometric sequence, the nth term is given by $a_{n}=a_{1} \cdot r^{n-1}$. Thus, the general form of an geometric series is given below.

$$
S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+\cdots+a_{1} r^{n-2}+a_{1} r^{n-1}
$$

(a) Write an expression below for the product of r and S_{n}.
(b) Find, in simplest form, the value of $S_{n}-r \cdot S_{n}$ in terms of a_{1}, r, and n.
$r \cdot S_{n}=$

$$
S_{n}-r \cdot S_{n}=
$$

(c) Write both sides of the equation in (b) in their factored form.
(d) From the equation in part (c), find a formula for S_{n} in terms of a_{1}, r, and n.

Exercise \#3: Which of the following represents the sum of a geometric series with 8 terms whose first term is 3 and whose common ratio is 4 ?
(1) 32,756
(3) 42,560
(2) 28,765
(4) 65,535

Sum of a Finite Geometric Series

For a geometric series defined by its first term, a_{1}, and its common ratio, r, the sum of n terms is given by:

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

Exercise \#4: Find the value of the geometric series shown below. Show the calculations that lead to your final answer.

$$
6+12+24+\cdots+768
$$

Exercise \#5: Maria places $\$ 500$ at the beginning of each year into an account that earns 5\% interest compounded annually. Maria would like to determine how much money is in her account after she has made her $\$ 500$ deposit at the beginning of the $11^{\text {th }}$ year.
(a) Determine a formula for the amount, $A(t)$, that a given $\$ 500$ has grown to t-years after it was placed into this account.
(b) Using this formula, determine the amount that $\$ 500$ deposited in years 1, 2, 10, and 11 have earned at the beginning of the $11^{\text {th }}$ year.
(c) Based on (b), write a geometric sum (d) Evaluate the sum in (c) using the formula above. representing the amount of money in Maria's account after the $11^{\text {th }}$ year deposit.

Exercise \#6: A person places 1 penny in a piggy bank on the first day of the month, 2 pennies on the second day, 4 pennies on the third, and so on. Will this person be a millionaire at the end of a 31 day month? Show the calculations that lead to your answer.
\qquad

GEOMETRIC SERIES
 Algebra 2 With Trigonometry - Homework

SkILLS

1. Find the sums of geometric series with the following properties:
(a) $a_{1}=6, r=3$ and $n=8$
(b) $a_{1}=20, r=1 / 2$, and $n=6$
(c) $a_{1}=-5, r=-2$, and $n=10$
2. If the geometric series $54+36+\cdots+\frac{128}{27}$ has seven terms in its sum then the value of the sum is
(1) $\frac{4118}{27}$
(3) $\frac{1370}{9}$
(2) $\frac{1274}{3}$
(4) $\frac{8241}{54}$
3. A geometric series has a first term of 32 and a final term of $-\frac{1}{4}$ and a common ratio of $-\frac{1}{2}$. The value of this series is
(1) 19.75
(3) 22.5
(2) 16.25
(4) 21.25
4. Which of the following represents the value of $\sum_{i=0}^{8} 256\left(\frac{3}{2}\right)^{i}$?
(1) 19,171
(3) 22,341
(2) 12,610
(4) 8,956
5. A geometric series whose first term is 3 and whose common ratio is 4 sums to 4095 . The number of terms in this sum is
(1) 8
(3) 6
(2) 5
(4) 4
6. Find the sum of the geometric series shown below. Show the work that leads to your answer.

$$
27+9+3+\cdots \frac{1}{729}
$$

Applications

7. In the picture shown at the right, the outer most square has an area of 16 square inches. All other squares are constructed by connecting the midpoints of the sides of the square it is inscribed within. Find the sum of the areas of all of the squares shown.

8. A college savings account is constructed so that $\$ 1000$ is placed the account on January $1^{\text {st }}$ of each year with a guaranteed 3% yearly return in interest, applied at the end of each year to the balance in the account. If this is repeatedly done, how much money is in the account after the $\$ 1000$ is deposited at the beginning of the $19^{\text {th }}$ year? Show the sum that leads to your answer as well as relevant calculations.
9. A ball is dropped from 16 feet above a hard surface. After each time it hits the surface, it rebounds to a height that is $3 / 4$ of its previous maximum height. What is the total vertical distance, to the nearest foot, the ball has traveled when it strikes the ground for the $10^{\text {th }}$ time? Write out the first five terms of this sum to help visualize.
