Name： \qquad Date： \qquad

DILATIONS
 COMMON CORE GEOMETRY

We＇ve seen three fundamental transformations so far that are rigid motions，i．e．transformations that do not change the shape nor the size of an object．There is an important transformation，though，that you encounter often in the real world，the dilation．This transformation enlarges or shrinks an object by some factor，but leaves its overall shape the same．

Exercise \＃1：Given the following images，determine the dilation scale factor，k ．

In order for phones，tablets，computers，and other electronic devices to be able to enlarge or shrink images，the process needs to be able to be described mathematically．The definition of a dilation involves two things，a center of dilation and a dilation scale factor．The technical definition is the following：

DILATIONS

A dilation D with a center at point C and a scale factor of k（where k must be positive）is a function that has as its input a point in the plane，A ，and has as its output the image point，A^{\prime} ，such that：

1．If A is the center of dilation，i．e．C ，then $D(C)=C$ ，in other words the dilation does not move the center．
2．If A is any other point and $D(A)=A^{\prime}$ then A^{\prime} is a point on the ray $\overrightarrow{C A}$ such that $C A^{\prime}=k \cdot C A$ ．

Exercise \＃2：If C is the center of the dilation，use your ruler to find the image of A after a dilation by a factor of（a）$k=2$ and（b） $k=0.5$ ．Label the first image point A^{\prime} and the second $A^{\prime \prime}$ ．Leave all marks．Write down equations relating the length of $\overline{C A}$ to $\overline{C A^{\prime}}$ and $\overline{C A^{\prime \prime}}$

Length Equations：

C．

Exercise \#3: Given $\triangle A B C$ shown below, we would like to dilate it using A as a center with a scale factor of 2 .
(a) Using a straightedge and a compass, find the image of
B and C and label them as B^{\prime} and C^{\prime}. Leave all marks.
Connect B^{\prime} and C^{\prime} to form $\overline{B^{\prime} C^{\prime}}$.
(b) Why wouldn't A change its location under this dilation?

(c) Explain why any points along either line $\overrightarrow{A C}$ or $\overrightarrow{A B}$ will still lie on these lines after the dilation?
(d) D is the midpoint of $\overline{B C}$. Find its image under this same dilation. Does it fall on $\overline{B^{\prime} C^{\prime}}$? Does it fall at the midpoint of $\overline{B^{\prime} C^{\prime}}$? Check using your ruler.
(e) How does the length of $\overline{B^{\prime} C^{\prime}}$ compare to the length of $\overline{B C}$? Check using your ruler or compass.
(f) What else seems to be true about the segments $\overline{B C}$ and $\overline{B^{\prime} C^{\prime}}$? How can you verify this experimentally?

The Two Primary Properties of Dilations

When a dilation of a line segment $\overline{A B}$ not containing the center by a scale factor of k produces $\overline{A^{\prime} B^{\prime}}$ then:

1. $A^{\prime} B^{\prime}=k \cdot A B$
2. $\overline{A^{\prime} B^{\prime}} \| \overline{A B}$

Name: \qquad
\qquad

DILATIONS

Common Core Geometry Homework

Measurement and Construction

1. Given the center point C, construct the dilated image of segment $\overline{E F}$ after a dilation by a scale factor of 3 . Use only a compass and straight edge. Label its image $\overline{E^{\prime} F^{\prime}}$. Leave all marks.

C^{\bullet}
2. Verify using your compass that $E^{\prime} F^{\prime}=3 \cdot E F$ in the diagram above. Leave your construction marks.
3. In the image below, point C lies on segment $\overline{R S}$. User your ruler to help dilate $\overline{R S}$ using C as a center with a scale factor of $\frac{1}{2}$. Label the image $\overline{R^{\prime} S^{\prime}}$.

4. Using your ruler, give the measurements of $\overline{R S}$ and $\overline{R^{\prime} S^{\prime}}$ in inches and verify that $R^{\prime} S^{\prime}=\frac{1}{2} R S$.
$R S=$

$$
R^{\prime} S^{\prime}=
$$

5. Dilate $\triangle A B C$ below using A as the center and a scale factor of 2 . Leave all construction marks.

6. Line segment $\overline{M N}$ is the image of $\overline{C D}$ after a dilation by a factor k with a center at point A. Using your ruler, determine the value of k to the nearest hundredth. Show the work that leads to your answer.

$M \ggg>$
N
A^{\bullet}

Problem Solving/Reasoning

7. If $\overline{J K}$ is dilated by a factor of 5 with a center point not on $\overline{J K}$ to produce the image $\overline{J^{\prime} K^{\prime}}$, then which of the following is true?
(1) $\overline{J^{\prime} K^{\prime}} \| \overline{J K}$ and $J^{\prime} K^{\prime}=5 J K$
(2) $\overline{J^{\prime} K^{\prime}} \perp \overline{J K}$ and $J^{\prime} K^{\prime}=5 J K$
(3) $\overline{J K} \| \overline{J^{\prime} K^{\prime}}$ and $J^{\prime} K^{\prime}=\frac{1}{5} J K$
(4) $\overline{J K} \perp \overline{J^{\prime} K^{\prime}}$ and $J^{\prime} K^{\prime}=\frac{1}{5} J K$
8. If $\overline{R S}$ is dilated by a factor of 4 with a center of R then which of the following is true about the segment joining point S with its image S^{\prime} ? Hint: draw a picture of this one!
(1) $S S^{\prime}=4 R S$ and $\overline{S S^{\prime}} \| \overline{R S}$
(2) $S S^{\prime}=\frac{1}{4} R S$ and $\overline{S S^{\prime}}$ lies on top of $\overline{R S}$
(3) $S S^{\prime}=\frac{1}{3} R S$ and $\overline{S S^{\prime}} \perp \overline{R S}$
(4) $S S^{\prime}=3 R S$ and $\overline{S S^{\prime}}$ is collinear with $\overline{R S}$
9. Below, $\triangle A B C$ has had the midpoints of sides $\overline{A B}$ and $\overline{A C}$ marked as D and E with $\overline{D E}$ drawn. Give a dilation, both the center and the scale factor, that would map $\overline{D E}$ onto $\overline{B C}$. Explain why this will work.

Center:
Scale factor:

Explanation:

