Name:

Date:

DILATIONS COMMON CORE GEOMETRY

We've seen three fundamental transformations so far that are **rigid motions**, i.e. transformations that **do not change** the **shape** nor the **size** of an object. There is an important transformation, though, that you encounter often in the real world, the **dilation**. This transformation enlarges or shrinks an object by some factor, but leaves its overall shape the same.

Exercise #1: Given the following images, determine the dilation scale factor, *k*.

In order for phones, tablets, computers, and other electronic devices to be able to enlarge or shrink images, the process needs to be able to be described mathematically. The definition of a dilation involves two things, a **center of dilation** and a dilation **scale factor**. The technical definition is the following:

DILATIONS

A dilation D with a center at point C and a scale factor of k (where k must be positive) is a **function** that has as its input a point in the plane, A, and has as its output the image point, A', such that:

1. If A is the center of dilation, i.e. C, then D(C) = C, in other words the dilation does not move the center.

2. If A is any other point and D(A) = A' then A' is a point on the ray \overrightarrow{CA} such that $CA' = k \cdot CA$.

Exercise #2: If *C* is the center of the dilation, use your ruler to find the image of *A* after a dilation by a factor of (a) k = 2 and (b) k = 0.5. Label the first image point *A*' and the second *A*". Leave all marks. Write down equations relating the length of \overline{CA} to $\overline{CA'}$ and $\overline{CA''}$

Length Equations:

C

Exercise #3: Given $\triangle ABC$ shown below, we would like to dilate it using A as a center with a scale factor of 2.

- (a) Using a straightedge and a compass, find the image of B and C and label them as B' and C'. Leave all marks. Connect B' and C' to form B'C'.
- (b) Why wouldn't A change its location under this dilation?

- (c) Explain why any points along either line \overrightarrow{AC} or \overrightarrow{AB} will still lie on these lines after the dilation?
- (d) *D* is the midpoint of \overline{BC} . Find its image under this same dilation. Does it fall on $\overline{B'C'}$? Does it fall at the midpoint of $\overline{B'C'}$? Check using your ruler.
- (e) How does the length of $\overline{B'C'}$ compare to the length of \overline{BC} ? Check using your ruler or compass.
- (f) What else seems to be true about the segments \overline{BC} and $\overline{B'C'}$? How can you verify this experimentally?

DILATIONS COMMON CORE GEOMETRY HOMEWORK

MEASUREMENT AND CONSTRUCTION

 Given the center point C, construct the dilated image of segment EF after a dilation by a scale factor of 3. Use only a compass and straight edge. Label its image E'F'. Leave all marks.

- 2. Verify using your compass that $E'F' = 3 \cdot EF$ in the diagram above. Leave your construction marks.
- 3. In the image below, point *C* lies on segment \overline{RS} . User your ruler to help dilate \overline{RS} using *C* as a center with a scale factor of $\frac{1}{2}$. Label the image $\overline{R'S'}$.

4. Using your ruler, give the measurements of \overline{RS} and $\overline{R'S'}$ in inches and verify that $R'S' = \frac{1}{2}RS$.

$$RS = R'S' =$$

5. Dilate $\triangle ABC$ below using A as the center and a scale factor of 2. Leave all construction marks.

Common Core Geometry, Unit #7 – Dilations and Similarity - Lesson #1 eMathInstruction, Red Hook, NY 12571, © 2018

6. Line segment \overline{MN} is the image of \overline{CD} after a dilation by a factor k with a center at point A. Using your ruler, determine the value of k to the nearest *hundredth*. Show the work that leads to your answer.

PROBLEM SOLVING/REASONING

- 7. If \overline{JK} is dilated by a factor of 5 with a center point not on \overline{JK} to produce the image $\overline{J'K'}$, then which of the following is true?
 - (1) $\overline{J'K'} \parallel \overline{JK}$ and J'K' = 5JK
 - (2) $\overline{J'K'} \perp \overline{JK}$ and J'K' = 5JK
 - (3) $\overline{JK} \parallel \overline{J'K'}$ and $J'K' = \frac{1}{5}JK$ (4) $\overline{JK} \perp \overline{J'K'}$ and $J'K' = \frac{1}{5}JK$
- 8. If \overline{RS} is dilated by a factor of 4 with a center of R then which of the following is true about the segment joining point S with its image S'? Hint: draw a picture of this one!
 - (1) SS' = 4RS and $\overline{SS'} \parallel \overline{RS}$ (2) $SS' = \frac{1}{4}RS$ and $\overline{SS'}$ lies on top of \overline{RS} (3) $SS' = \frac{1}{3}RS$ and $\overline{SS'} \perp \overline{RS}$
 - (4) SS' = 3RS and $\overline{SS'}$ is collinear with \overline{RS}
- 9. Below, $\triangle ABC$ has had the midpoints of sides \overline{AB} and \overline{AC} marked as D and E with \overline{DE} drawn. Give a dilation, both the center and the scale factor, that would map \overline{DE} onto \overline{BC} . Explain why this will work.

Center:

Scale factor:

Explanation:

Common Core Geometry, Unit #7 – Dilations and Similarity - Lesson #1 eMathInstruction, Red Hook, NY 12571, © 2018