ът		
	ame	٠
TA	anne	•

THE MIDPOINTS OF A TRIANGLE COMMON CORE GEOMETRY

Now that we've learned a bit about parallelograms, we are going to take a slight diversion back to the work of triangles to investigate an interesting thing that happens when you connect two **midpoints** of the sides of a triangle with a line segment.

Exercise #1: In the diagram shown, $\triangle ABC$ is drawn with vertices at A(-3,9), B(9,5), and C(-7,-7).

(a) Using the midpoint formula, find the midpoints of sides \overline{AB} and \overline{AC} , then plot and label them D and E respectively.

Midpoint of \overline{AB} :Midpoint of \overline{AC} :(point D)(point E)

Date:

(b) Draw in segment \overline{DE} . Then, using the distance and slope formulas, find the length and slope of both \overline{DE} and \overline{BC} . What observations can you make about these two segments?

Length of \overline{DE} : Length of \overline{BC} : Observations:

Slope of \overline{DE} :

Slope of \overline{BC} :

This is a remarkable fact. When you connect the midpoints of any two sides of a triangle, the segment created is parallel to and half the length of the third side.

Exercise #2: If a triangle with side lengths of 10, 14, and 18 has the midpoints of all three sides connected by segments, what must be the perimeter of the triangle formed? Draw a picture to help explain your work.

Exercise #3: ΔLMN has vertices at L(6, 11), M(13, 7) and N(2, 1). If the midpoints of sides \overline{LM} and \overline{NM} are connected with a segment, which of the following would be its slope?

(1) $\frac{5}{2}$ (3) $-\frac{4}{7}$

 $\frac{3}{2}$

(2) $\frac{6}{11}$

Common Core Geometry, Unit #6 – Quadrilaterals - Lesson #4 eMathInstruction, Red Hook, NY 12571, © 2018

These two facts about the segment joining the midpoints of two sides of a triangle can be proven using Euclidean logic and what we know about parallelograms. The reasoning behind the proof will be presented in the next exercise.

Exercise #4: In the diagram shown, $\triangle ABC$ has the midpoints of sides \overline{AB} and \overline{AC} marked with points *E* and *D* as shown.

- (a) Using only a compass and straightedge, extend \overline{DE} through *E* to point *F* such that $\overline{DE} \cong \overline{EF}$. Leave all construction marks.
- (b) Draw in segment \overline{BF} .
- (c) Give an argument for why $\triangle AED$ must be congruent to $\triangle BEF$.

- (d) Explain why, since $\triangle AED \cong \triangle BEF$, \overline{BF} must be parallel to \overline{AC} . Why does this then lead to the fact that \overline{BF} must be parallel to \overline{CD} ?
- (e) Why must \overline{BF} and \overline{CD} be the same length? Give a careful explanation based on what you know, not just what the picture looks like.

(f) Why can you now conclude that *DFBC* is a parallelogram? How does this conclusion then result in the two properties we've observed about the segment connecting the midpoints (in this case \overline{DE})?

Name:

THE MIDPOINTS OF A TRIANGLE COMMON CORE GEOMETRY HOMEWORK

PROBLEM SOLVING

- 1. If the midpoints of two sides of a triangle are connected with a segment then
 - (1) the segment is half the length of the third side and perpendicular to it
 - (2) the segment is twice the length of the third side and parallel to it
 - (3) the segment is half the length of the third side and parallel to it
 - (4) the segment is twice the length of the third side and perpendicular to it
- 2. A right triangle has legs with lengths of 10 and 24 inches. If the midpoints of all three sides of this triangle were connected, the resulting right triangle would have a hypotenuse with a length of
 - (1) 5 inches (3) 12 inches
 - (2) 8 inches (4) 13 inches
- 3. If a triangle has a perimeter of 36 inches, which of the following would be the perimeter of the triangle formed by connecting its midpoints?
 - (1) 18 inches (3) 24 inches
 - (2) 20 inches (4) 72 inches
- 4. In ΔRST , the vertices have coordinates of R(-1,10), S(5,4) and T(-4,-2). If the midpoints of sides \overline{RS} and \overline{RT} were connected with a segment, what would the slope of this segment be?
 - (1) -1 (3) $\frac{2}{3}$

(2)
$$-\frac{5}{2}$$
 (4) 4

5. For $\triangle DEF$, the vertices have coordinates of D(4,14), E(6,1) and F(-4,6). Which of the following would represent the equation of the line that passes through the midpoints of sides \overline{DE} and \overline{FD} ?

(1)
$$y = -\frac{1}{2}x + 10$$
 (3) $y = -\frac{1}{2}x + 5$

(2)
$$y = -\frac{3}{2}x - 4$$
 (4) $y = -\frac{3}{2}x + 8$

REASONING

6. In the diagram of ΔMNP shown, the midpoints of sides \overline{MN} and \overline{MP} have been connected to form segment \overline{SR} . Explain why quadrilateral SRNP must be a trapezoid.

7. For $\triangle ABC$ shown, with vertices at A(-2, 6), B(8, -2) and C(-8, -4), show using coordinate geometry that the segment connecting the midpoints of sides \overline{AC} and \overline{BC} is half the length of side \overline{AB} . Show all work below.

С

