\qquad Date: \qquad

The Midpoints of a Triangle Common Core Geometry

Now that we've learned a bit about parallelograms, we are going to take a slight diversion back to the work of triangles to investigate an interesting thing that happens when you connect two midpoints of the sides of a triangle with a line segment.

Exercise \#1: In the diagram shown, $\triangle A B C$ is drawn with vertices at $A(-3,9), B(9,5)$, and $C(-7,-7)$.
(a) Using the midpoint formula, find the midpoints of sides $\overline{A B}$ and $\overline{A C}$, then plot and label them D and E respectively.
Midpoint of $\overline{A B}$: \quad Midpoint of $\overline{A C}$:
(point D)
(point E)

(b) Draw in segment $\overline{D E}$. Then, using the distance and slope formulas, find the length and slope of both $\overline{D E}$ and $\overline{B C}$. What observations can you make about these two segments?
Length of $\overline{D E}$:
Length of $\overline{B C}$:
Observations:

Slope of $\overline{D E}$:
Slope of $\overline{B C}$:

This is a remarkable fact. When you connect the midpoints of any two sides of a triangle, the segment created is parallel to and half the length of the third side.

Exercise \#2: If a triangle with side lengths of 10, 14, and 18 has the midpoints of all three sides connected by segments, what must be the perimeter of the triangle formed? Draw a picture to help explain your work.

Exercise \#3: $\triangle L M N$ has vertices at $L(6,11), M(13,7)$ and $N(2,1)$. If the midpoints of sides $\overline{L M}$ and $\overline{N M}$ are connected with a segment, which of the following would be its slope?
(1) $\frac{5}{2}$
(3) $-\frac{4}{7}$
(2) $\frac{6}{11}$
(4) $-\frac{3}{2}$

These two facts about the segment joining the midpoints of two sides of a triangle can be proven using Euclidean logic and what we know about parallelograms. The reasoning behind the proof will be presented in the next exercise.

Exercise \#4: In the diagram shown, $\triangle A B C$ has the midpoints of sides $\overline{A B}$ and $\overline{A C}$ marked with points E and D as shown.
(a) Using only a compass and straightedge, extend $\overline{D E}$ through E to point F such that $\overline{D E} \cong \overline{E F}$. Leave all construction marks.
(b) Draw in segment $\overline{B F}$.
(c) Give an argument for why $\triangle A E D$ must be congruent to $\triangle B E F$.

(d) Explain why, since $\triangle A E D \cong \triangle B E F, \overline{B F}$ must be parallel to $\overline{A C}$. Why does this then lead to the fact that $\overline{B F}$ must be parallel to $\overline{C D}$?
(e) Why must $\overline{B F}$ and $\overline{C D}$ be the same length? Give a careful explanation based on what you know, not just what the picture looks like.
(f) Why can you now conclude that $D F B C$ is a parallelogram? How does this conclusion then result in the two properties we've observed about the segment connecting the midpoints (in this case $\overline{D E}$)?
\qquad

The Midpoints of a Triangle Common Core Geometry Homework

Problem Solving

1. If the midpoints of two sides of a triangle are connected with a segment then
(1) the segment is half the length of the third side and perpendicular to it
(2) the segment is twice the length of the third side and parallel to it
(3) the segment is half the length of the third side and parallel to it
(4) the segment is twice the length of the third side and perpendicular to it
2. A right triangle has legs with lengths of 10 and 24 inches. If the midpoints of all three sides of this triangle were connected, the resulting right triangle would have a hypotenuse with a length of
(1) 5 inches
(3) 12 inches
(2) 8 inches
(4) 13 inches
3. If a triangle has a perimeter of 36 inches, which of the following would be the perimeter of the triangle formed by connecting its midpoints?
(1) 18 inches
(3) 24 inches
(2) 20 inches
(4) 72 inches
4. In $\triangle R S T$, the vertices have coordinates of $R(-1,10), S(5,4)$ and $T(-4,-2)$. If the midpoints of sides $\overline{R S}$ and $\overline{R T}$ were connected with a segment, what would the slope of this segment be?
(1) -1
(3) $\frac{2}{3}$
(2) $-\frac{5}{2}$
(4) 4
5. For $\triangle D E F$, the vertices have coordinates of $D(4,14), E(6,1)$ and $F(-4,6)$. Which of the following would represent the equation of the line that passes through the midpoints of sides $\overline{D E}$ and $\overline{F D}$?
(1) $y=-\frac{1}{2} x+10$
(3) $y=-\frac{1}{2} x+5$
(2) $y=-\frac{3}{2} x-4$
(4) $y=-\frac{3}{2} x+8$

REASONING

6. In the diagram of $\triangle M N P$ shown, the midpoints of sides $\overline{M N}$ and $\overline{M P}$ have been connected to form segment $\overline{S R}$. Explain why quadrilateral $S R N P$ must be a trapezoid.

7. For $\triangle A B C$ shown, with vertices at $A(-2,6), B(8,-2)$ and $C(-8,-4)$, show using coordinate geometry that the segment connecting the midpoints of sides $\overline{A C}$ and $\overline{B C}$ is half the length of side $\overline{A B}$. Show all work below.

8. Given $\triangle A B C$ with midpoints of sides D, E, F connected as shown, explain why $\triangle A F D \cong \triangle F C E \cong \triangle D E B \cong \triangle E D F$.

9. Given what we observed in $\# 8$, how does the area of $\triangle A F D$ above compare to the area of $\triangle A B C$? Explain your answer.
