Name: _____

Date:

THE DISCRIMINANT OF A QUADRATIC COMMON CORE ALGEBRA II

Since the roots of a quadratic can be found using $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ the quantity under the square root,

 $b^2 - 4ac$, truly dictates what type of numbers the roots of a quadratic (and its *x*-intercepts or zeroes) turn out to be. It reduces down to four cases which will be explored in *Exercise* #1.

Exercise #1: For each of the following quadratics, calculate its discriminant, its roots, and state the number and nature (whether they are rational, irrational or imaginary) of the roots.

(a) Case I – The Discriminant is a Perfect Square: $x^2 + 3x - 10 = 0$.

 $D = b^2 - 4ac =$ Roots: Number and Nature:

(b) Case II – The Discriminant is Not a Perfect Square: $x^2 - 6x + 7 = 0$.

 $D = b^2 - 4ac =$ Roots: Number and Nature:

(c) Case III – The Discriminant is Equal to Zero: $x^2 - 10x + 25 = 0$.

 $D = b^2 - 4ac =$ Roots: Number and Nature:

(d) Case IV – The Discriminant is Less than Zero: $x^2 - 8x + 20 = 0$

 $D = b^2 - 4ac =$ Roots: Number and Nature:

In the last lesson, we explored Case IV extensively. In the case where the discriminant is negative, the roots of the quadratic are **imaginary** and it does not have *x*-intercepts (i.e. it does not cross the *x*-axis).

Exercise #2: By using only the discriminant, determine the number and nature of the roots of each of the following quadratics.

(a) $2x^2 + 7x - 4 = 0$ (b) $x^2 - 8x + 25 = 0$ (c) $4x^2 + 4x + 1 = 0$

(d)
$$x^2 + 6x + 15 = 0$$
 (e) $4x^2 - 4x - 7 = 0$ (f) $3x^2 - 7x + 2 = 0$

Exercise #3: Consider the quadratic function whose equation is $y = x^2 - 4x + 4$. Determine the number of *x*-intercepts of this quadratic from the value of its discriminant. Then, sketch its graph on the axes given. We say that this parabola is **tangent** to the *x*-axis.

Exercise #4: Which of the following parabolas has two unequal, rational *x*-intercepts?

- (1) $y = x^2 2x 1$ (3) $y = x^2 8x + 16$
- (2) $y = x^2 + 2x 15$ (4) $y = x^2 3x + 5$

Exercise #5: For what values of *a* will the parabola $y = ax^2 + 4x + 2$ not cross the *x*-axis?

Name:

THE DISCRIMINANT OF A QUADRATIC COMMON CORE ALGEBRA II HOMEWORK

SKILLS

- 1. For each of the following quadratic equations, determine the number and the nature of the roots by first calculating the quadratic's discriminant.
 - (a) $2x^2 + 4x + 5 = 0$ (b) $9x^2 12x + 4 = 0$ (c) $4x^2 13x + 3 = 0$

(d)
$$x^2 + 8x + 11 = 0$$
 (e) $4x^2 + 4x - 7 = 0$ (f) $36x^2 - 12x + 1 = 0$

(g)
$$-3x^2 + 4x - 8 = 0$$
 (h) $3x^2 + 8x + 4 = 0$ (i) $x^2 + 8x + 41 = 0$

2. The roots of $x^2 + 4x - 7 = 0$ are

- (1) unequal and rational (3) unequal and irrational
- (2) unequal and imaginary (4) equal and rational
- 3. Which of the following quadratics has imaginary roots?
 - (1) $x^2 + 3x 5 = 0$ (3) $2x^2 3x + 1 = 0$
 - (2) $x^2 + 6x + 10 = 0$ (4) $x^2 7x + 10 = 0$
- 4. Which of the following quadratics, when graphed, would touch the *x*-axis exactly once?
 - (1) $y = x^2 2x 3$ (3) $y = x^2 + 5x 2$
 - (2) $y = 2x^2 + 3x + 7$ (4) $y = x^2 12x + 36$

5. If graphed, which of the following parabolas would lie entirely below the x-axis?

(1)
$$y = x^2 + 5x + 10$$
 (3) $y = -2x^2 + 6x - 5$

- (2) $y = -2x^2 5x + 3$ (4) $y = x^2 + 6x + 9$
- 6. Which parabola below, when graphed, would cross the *x*-axis at two unequal irrational locations?
 - (1) $y = 2x^2 + 11x + 12$ (3) $y = 9x^2 6x + 1$
 - (2) $y = x^2 + 2x 4$ (4) $y = 2x^2 + 4x + 9$

REASONING

7. Determine all values of *a* that will cause the parabola $y = ax^2 + 10x + 1$ to cross the *x*-axis at two distinct locations.

8. Consider the parabola whose equation is $y = x^2 - 4x$ and the line whose equation is y = 2x + b, where b is some unknown constant. Determine the value of b such that the line and the parabola will intersect at exactly one location. Then, sketch the system of equations on the axes below. Label their intersection point.

