Name:

Date:

TRANSLATIONS COMMON CORE GEOMETRY

So far we have studied two of the three basic **rigid motions**: the rotation and the (line) reflection. In this lesson, we study the last of the rigid motions, the **translation**. The basic concept of a translation will be illustrated in the first exercise.

Exercise #1: In the diagram below ray \overrightarrow{AB} is shown along with segment \overrightarrow{CD} . The dashed lines are all horizontal, and thus parallel. Translate \overrightarrow{CD} in the direction of \overrightarrow{AB} by a length of 1.5 inches. Label its image $\overrightarrow{C'D'}$. Use your protractor along with a ruler to do the translation.

Exercise #2: What observations can you make about \overline{CD} versus $\overline{C'D'}$ from #1? List as many as you can.

Translations are extremely important. They allow us to move a geometric figure in the plane without rotating or reflecting it. We say that we **shift** the object. Translations are easily given in the coordinate plane.

Exercise #3: Given $\triangle ABC$ shown at the right with vertices at A(-3,8), B(-6,-3), and C(4,2), find and plot its image after a translation 4 units to the right and 7 units down. Label the image $\triangle A'B'C'$ and state its coordinates. Sometimes this transformation will be symbolized by $T_{4,-7}$.

Sometimes a figure has had multiple rigid motions combined to produce an image.

Exercise #4: Given the two triangles shown in the image below, describe a sequence of rigid motions that would map ΔABC into $\Delta A'B'C'$. There are many different, correct answers.

Translations have all the properties of the other two rigid motions with an additional property that you noted in Exercise #2. The summary of all these properties is shown below.

TRANSLATION PROPERTIES

- 1. Map lines to parallel lines (only true of translations).
- 2. Preserve angles (true of all rigid motions). 3. Preserve length/distance (true of all rigid motions).

The properties of translations can be used to prove one of the important **properties of a parallelogram**. Remember, the **defining characteristic** of a **parallelogram** is that it has **two pairs of parallel sides**. We will now use this fact, along with the properties of translations, to prove its opposite sides have the same length.

Exercise #5: In the diagram below, parallelogram *ABCD* is drawn.

(a) If \overline{AD} was translated in the direction of \overline{AB} with a distance of AB then explain why the image of D, called D', would have to lie on ray \overline{BC} ?

- (b) Why would D' also have to lie along ray \overrightarrow{DC} ?
- (c) Given that D' must lie along both \overrightarrow{BC} and \overrightarrow{DC} , where must it land? Why does this now prove that AD = BC?

Date:

TRANSLATIONS COMMON CORE GEOMETRY HOMEWORK

MEASUREMENT AND CONSTRUCTION

1. Given $\triangle ABC$ with horizontal base \overline{AB} extended (dashed line) and another horizontal reference line drawn at *C*, translate $\triangle ABC$ in the direction of \overline{EF} a distance of EF. Use your compass to help with the direction. Use your protractor to help with distance.

- 2. In the diagram below, $\Delta E'F'G'$ is a transformation of ΔEFG .
 - (a) Using tracing paper, are the two triangles the same shape and size?
 - (b) Could $\Delta E'F'G'$ be the image of ΔEFG after a translation alone? Support your answer with measurements.

PROBLEM SOLVING

- 3. Which of the following is a property of translations that is *not* also a property of other types of rigid motions?
 - (1) they map line segments to other line segments of equal length
 - (2) they map angles to other angles of the same size
 - (3) they map lines to parallel lines
 - (4) they map lines to perpendicular lines

E'

- 4. If the point (-2, -4) was reflected in the *x*-axis and then translated five units right and seven units down, which of the following would be the coordinates of its image? *y*
 - (1) (2,3) (3) (3,-3)
 - (2) (4, -8) (4) (-7, 5)

- 5. In the diagram below, line segment \overline{AB} is drawn. Point A has been mapped to image point A' by the use of a translation. y
 - (a) Find and plot the coordinates of B', the image of B after the same translation that A underwent. State the coordinates of B' below.
 - (b) What is the relationship between segments \overline{AB} and $\overline{A'B'}$? Explain.
- 6. $\Delta R'S'T'$ is the image of ΔRST after a sequence of rigid motions. Give a sequence of rigid motions that would correctly produce $\Delta R'S'T'$. There are many correct answers.

COMMON CORE GEOMETRY, UNIT #2 – TRANSFORMATIONS, RIGID MOTIONS, AND CONGRUENCE – LESSON #5 eMathInstruction, Red Hook, NY 12571, © 2018