\qquad Date: \qquad

Average Rate of Change Common Core Algebra II

When we model using functions, we are very often interested in the rate that the output is changing when compared to a change in the input.

Exercise \#1: The function $f(x)$ is shown graphed to the right.
(a) Evaluate each of the following based on the graph:
(i) $f(0)$
(ii) $f(4)$
(iii) $f(7)$
(iv) $f(13)$
(b) Find the change in the function, Δf, over each of the following domain intervals. Find this by subtraction and show the change on the graph.
(i) $0 \leq x \leq 4$
(ii) $4 \leq x \leq 7$
(iii) $7 \leq x \leq 13$

(c) Why can't you simply compare the changes in f from part (b) to determine over which interval the function is changing the fastest?
(d) Calculate the average rate of change for the function over each of the intervals and determine which interval has the greatest rate.
(i) $0 \leq x \leq 4$
(ii) $4 \leq x \leq 7$
(iii) $7 \leq x \leq 13$
(e) Using a straightedge, draw in the lines whose slopes you found in part (d) by connecting the points shown on the graph. The average rate of change gives a measurement of what property of the line?

The average rate of change is an exceptionally important concept in mathematics because it gives us a way to quantify how fast a function changes on average over a certain domain interval. Although we used its formula in the last exercise, we state it formally here:

Average Rate of Change

For a function over the domain interval $a \leq x \leq b$, the function's average rate of change is calculated by:

$$
\frac{\Delta f}{\Delta x}=\frac{\text { change in the output }}{\text { change in the input }}=\frac{f(b)-f(a)}{b-a}
$$

Exercise \#2: Consider the two functions $f(x)=5 x+7$ and $g(x)=2 x^{2}+1$.
(a) Calculate the average rate of change for both functions over the following intervals. Do your work carefully and show the calculations that lead to your answers.
(i) $-2 \leq x \leq 3$
(ii) $1 \leq x \leq 5$
(b) The average rate of change for f was the same for both (i) and (ii) but was not the same for g. Why is that?

Exercise \#3: The table below represents a linear function. Fill in the missing entries.

x	1	5	11		45
y	-5	1		22	

\qquad

Average Rate of Change Common Core Algebra II Homework

Fluency

1. For the function $g(x)$ given in the table below, calculate the average rate of change for each of the following intervals.

x	-3	-1	4	6	9
$g(x)$	8	-2	13	12	5

(a) $-3 \leq x \leq-1$
(b) $-1 \leq x \leq 6$
(c) $-3 \leq x \leq 9$
(d) Explain how you can tell from the answers in (a) through (c) that this is not a table that represents a linear function.
2. Consider the simple quadratic function $f(x)=x^{2}$. Calculate the average rate of change of this function over the following intervals:
(a) $0 \leq x \leq 2$
(b) $2 \leq x \leq 4$
(c) $4 \leq x \leq 6$
(d) Clearly the average rate of change is getting larger at x gets larger. How is this reflected in the graph of f shown sketched to the right?

3. Which has a greater average rate of change over the interval $-2 \leq x \leq 4$, the function $g(x)=16 x-3$ or the function $f(x)=2 x^{2}$? Provide justification for your answer.

ApPliCATIONS

4. An object travels such that its distance, d, away from its starting point is shown as a function of time, t, in seconds, in the graph below.
(a) What is the average rate of change of d over the interval $5 \leq t \leq 7$? Include proper units in your answer.
(b) The average rate of change of distance over time (what you found in part (a)) is known as the average speed of an object. Is the average speed of this object greater on the interval $0 \leq t \leq 5$ or $11 \leq t \leq 14$? Justify.

Reasoning

5. What makes the average rate of change of a linear function different from that of any other function? What is the special name that we give to the average rate of change of a linear function?
