\qquad

The Method of Common Bases Common Core Algebra II

There are very few algebraic techniques that do not involve technology to solve equations that contain exponential expressions. In this lesson we will look at one of the few, known as The Method of Common Bases.

Exercise \#1: Solve each of the following simple exponential equations by writing each side of the equation using a common base.
(a) $2^{x}=16$
(b) $3^{x}=27$
(c) $5^{x}=\frac{1}{25}$
(d) $16^{x}=4$

In each of these cases, even the last, more challenging one, we could manipulate the right-hand side of the equation so that it shared a common base with the left-hand side of the equation. We can exploit this fact by manipulating both sides so that they have a common base. First, though, we need to review an exponent law.
Exercise \#2: Simplify each of the following exponential expressions.
(a) $\left(2^{3}\right)^{x}$
(b) $\left(3^{2}\right)^{4 x}$
(c) $\left(5^{-1}\right)^{3 x-7}$
(d) $\left(4^{-3}\right)^{1-x^{2}}$

Exercise \#3: Solve each of the following equations by finding a common base for each side.
(a) $8^{x}=32$
(b) $9^{2 x+1}=27$
(c) $125^{x}=(1 / 25)^{4-x}$

Exercise \#4: Which of the following represents the solution set to the equation $2^{x^{2}-3}=64$?
(1) $\{ \pm 3\}$
(3) $\{ \pm \sqrt{11}\}$
(2) $\{0,3\}$
(4) $\{ \pm \sqrt{35}\}$

This technique can be used in any situation where all bases involved can be written with a common base. In a practical sense, this is rather rare. Yet, these types of algebraic manipulations help us see the structure in exponential expressions. Try to tackle the next, more challenging, problem.

Exercise \#5: Two exponential curves, $y=4^{x+\frac{5}{2}}$ and $y=\left(\frac{1}{2}\right)^{2 x+1}$ are shown below. They intersect at point A. A rectangle has one vertex at the origin and the other at A as shown. We want to find its area.
(a) Fundamentally, what do we need to know about a rectangle to find its area?
(b) How would knowing the coordinates of point A help us find the area?

(c) Find the area of the rectangle algebraically using the Method of Common Bases. Show your work carefully.

Exercise \#6: At what x coordinate will the graph of $y=25^{x-a}$ intersect the graph of $y=\left(\frac{1}{125}\right)^{3 x+1}$? Show the work that leads to your choice.
(1) $x=\frac{5 a-1}{3}$
(3) $x=\frac{-2 a+1}{5}$
(2) $x=\frac{2 a-3}{11}$
(4) $x=\frac{5 a+3}{2}$
\qquad

The Method of Common Bases Common Core Algebra II Homework

Fluency

1. Solve each of the following exponential equations using the Method of Common Bases. Each equation will result in a linear equation with one solution. Check your answers.
(a) $3^{2 x-5}=9$
(b) $2^{3 x+7}=16$
(c) $5^{4 x-5}=1 / 125$
(d) $8^{x}=4^{2 x+1}$
(e) $216^{x-2}=(1 / 1296)^{3 x-2}$
(f) $(1 / 25)^{x+15}=3125^{\frac{3}{5} x-1}$
2. Algebraically determine the intersection point of the two exponential functions shown below. Recall that most systems of equations are solved by substitution.

$$
y=8^{x-1} \text { and } y=4^{2 x-3}
$$

3. Algebraically determine the zeroes of the exponential function $f(x)=2^{2 x-9}-32$. Recall that the reason it is known as a zero is because the output is zero.

ApPlications

4. One hundred must be raised to what power in order to be equal to a million cubed? Solve this problem using the Method of Common Bases. Show the algebra you do to find your solution.
5. The exponential function $y=\left(\frac{1}{25}\right)^{\frac{x-2}{5}}-10$ is shown graphed along with the horizontal line $y=115$. Their intersection point is $(a, 115)$. Use the Method of Common Bases to find the value of a. Show your work.

Reasoning

6 The Method of Common Bases works because exponential functions are one-to-one, i.e. if the outputs are the same, then the inputs must also be the same. This is what allows us to say that if $2^{x}=2^{3}$, then x must be equal to 3 . But it doesn't always work out so easily.

If $x^{2}=5^{2}$, can we say that x must be 5 ? Could it be anything else? Why does this not work out as easily as the exponential case?

