Name: _____

Date:

THE METHOD OF COMMON BASES COMMON CORE ALGEBRA II

There are very few algebraic techniques that **do not involve technology** to solve equations that contain **exponential expressions**. In this lesson we will look at one of the few, known as **The Method of Common Bases**.

Exercise #1: Solve each of the following simple exponential equations by writing each side of the equation using a common base.

(a)
$$2^x = 16$$
 (b) $3^x = 27$ (c) $5^x = \frac{1}{25}$ (d) $16^x = 4$

In each of these cases, even the last, more challenging one, we could manipulate the right-hand side of the equation so that it shared a **common base** with the left-hand side of the equation. We can exploit this fact by manipulating both sides so that they have a common base. First, though, we need to review an exponent law.

Exercise #2: Simplify each of the following exponential expressions.

(a)
$$(2^3)^x$$
 (b) $(3^2)^{4x}$ (c) $(5^{-1})^{3x-7}$ (d) $(4^{-3})^{1-x^2}$

Exercise #3: Solve each of the following equations by finding a common base for each side.

(a)
$$8^x = 32$$
 (b) $9^{2x+1} = 27$ (c) $125^x = \left(\frac{1}{25}\right)^{4-3}$

Exercise #4: Which of the following represents the solution set to the equation $2^{x^2-3} = 64$?

- (1) $\{\pm 3\}$ (3) $\{\pm \sqrt{11}\}$
- (2) $\{0,3\}$ (4) $\{\pm\sqrt{35}\}$

This technique can be used in any situation where all bases involved can be written with a common base. In a practical sense, this is rather rare. Yet, these types of algebraic manipulations help us see the **structure** in **exponential expressions**. Try to tackle the next, more challenging, problem.

Exercise #5: Two exponential curves, $y = 4^{x+\frac{5}{2}}$ and $y = \left(\frac{1}{2}\right)^{2x+1}$ are shown below. They intersect at point A. A

rectangle has one vertex at the origin and the other at A as shown. We want to find its area.

(c) Find the area of the rectangle algebraically using the Method of Common Bases. Show your work carefully.

Exercise #6: At what *x* coordinate will the graph of $y = 25^{x-a}$ intersect the graph of $y = \left(\frac{1}{125}\right)^{3x+1}$? Show the work that leads to your choice.

(1)
$$x = \frac{5a-1}{3}$$
 (3) $x = \frac{-2a+1}{5}$

(2)
$$x = \frac{2a-3}{11}$$
 (4) $x = \frac{5a+3}{2}$

THE METHOD OF COMMON BASES COMMON CORE ALGEBRA II HOMEWORK

FLUENCY

1. Solve each of the following exponential equations using the Method of Common Bases. Each equation will result in a linear equation with one solution. Check your answers.

(a)
$$3^{2x-5} = 9$$
 (b) $2^{3x+7} = 16$ (c) $5^{4x-5} = \frac{1}{125}$

(d)
$$8^{x} = 4^{2x+1}$$
 (e) $216^{x-2} = \left(\frac{1}{1296}\right)^{3x-2}$ (f) $\left(\frac{1}{25}\right)^{x+15} = 3125^{\frac{3}{5}x-1}$

2. *Algebraically* determine the intersection point of the two exponential functions shown below. Recall that most systems of equations are solved by substitution.

$$y = 8^{x-1}$$
 and $y = 4^{2x-3}$

3. Algebraically determine the zeroes of the exponential function $f(x) = 2^{2x-9} - 32$. Recall that the reason it is known as a zero is because the **output is zero**.

APPLICATIONS

4. One hundred must be raised to what power in order to be equal to a million cubed? Solve this problem using the Method of Common Bases. Show the algebra you do to find your solution.

5. The exponential function $y = \left(\frac{1}{25}\right)^{\frac{x-2}{5}} -10$ is shown graphed along with the horizontal line y = 115. Their intersection point is (a, 115). Use the Method of Common Bases to find the value of *a*. Show your work.

REASONING

6 The Method of Common Bases works because exponential functions are one-to-one, i.e. if the outputs are the same, then the inputs must also be the same. This is what allows us to say that if $2^x = 2^3$, then x must be equal to 3. But it doesn't always work out so easily.

If $x^2 = 5^2$, can we say that x must be 5? Could it be anything else? Why does this not work out as easily as the exponential case?

