\qquad

Vertical Shifting of Functions
 N-Gen MATH ${ }^{\circledR}$ Algebra I

We can build new functions from others by various types of transformations. Perhaps the simplest of these transformations is a vertical shift of a function.

Exercise \#1: The function $f(x)=x^{2}$ is shown graphed on the grid. The function $g(x)$ is defined by the formula $g(x)=f(x)+3$.
(a) Write a formula in terms of x for the function $g(x)$.
(b) Graph $g(x)$ on the same grid as $f(x)$. Show a table of values in the space to the right.
(c) Describe how the graph of $g(x)$ compares to the graph of $f(x)$.

(d) How would the graph of $h(x)=x^{2}-4$ compare to the graph of $f(x)=x^{2}$? Produce a graph of $h(x)$ on the same grid using your answer to this question.

Vertical shifting of functions is the simplest of all transformations because it occurs by simply adding or subtracting a value from the original function.

Vertical Shifting of a Function

If \boldsymbol{k} is a positive number then $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{x})+\boldsymbol{k}$ represents an upward shift of $\boldsymbol{f}(\boldsymbol{x})$ by \boldsymbol{k} units and $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{k}$ represents a downward shift of $\boldsymbol{f}(\boldsymbol{x})$ by \boldsymbol{k} units.

Exercise \#2: The graph of $f(x)$ is shown. The function $g(x)$ is defined by the formula $g(x)=f(x)-3$
(a) What is the value of $g(-4)$. Show how you found it.
(b) How will the graph of $g(x)$ compare to that of $f(x)$?
(c) Create a graph of $g(x)$ on the same grid.

Any function can be shifted up or down based on adding or subtracting a constant from its formula.
Exercise \#3: The function $f(x)=x^{2}-6 x+5$ is shown graphed on the grid. The function $g(x)$ is defined by the formula $g(x)=f(x)+4$.
(a) Give a formula for $g(x)$ in terms of x.
(b) How will the graph of $g(x)$ compare to that of $f(x)$?
(c) Using your answer to (b), graph $g(x)$ on the same grid.
(d) The function $g(x)$ has only one zero. Algebraically determine its value.

(e) How does the graph of $g(x)$ support your answer to part (d)?

Vertical shifting of functions can also have practical applications.
Exercise \#4: A physics experiment is run where a projectile is fired from the ground surface. Its height, as a function of the horizontal distance it has traveled, is given by $h(x)=-0.02 x^{2}+1.6 x$. The graph is shown below.
(a) Using the axis of symmetry formula, show that the maximum of the function $h(x)$ must occur at $x=40$.
(b) The projectile is then fired off of the top of a 15 -foot-tall platform so that its new height function is given by:

$$
g(x)=h(x)+15
$$

Graph $g(x)$ on the grid

(c) What would be the peak height the projectile would reach that was fired off the platform? Justify your answer.
\qquad

Vertical Shifting of Functions N-Gen Math ${ }^{\circledR}$ Algebra I Homework

Fluency

1. If $f(x)=3 x+7$ and $g(x)=f(x)-9$, then which of the following is a correct formula for $g(x)$ in terms of x ?
(1) $g(x)=3 x+16$
(2) $g(x)=-6 x+7$
(3) $g(x)=3 x-2$
(4) $g(x)=12 x+7$
2. The function $g(x)$ is shown graphed. If $h(x)=g(x)-5$ then which of the following is the value of $h(4)$?
(1) -6
(2) 2
(3) 3
(4) 8
3. Which of the following is the formula for the graph shown below?
(1) $y=(x-4)^{2}$
(2) $y=x^{2}-4$
(3) $y=|x-4|$
(4) $y=|x|-4$

4. The function $f(x)$ has the formula $f(x)=2 \sqrt{x+3}-1$. Which of the following is the formula for the function $g(x)$ shown on the same graph?
(1) $g(x)=2 \sqrt{x+3}+2$
(2) $g(x)=2 \sqrt{x+6}-1$
(3) $g(x)=2 \sqrt{x+3}+3$
(4) $g(x)=2 \sqrt{x+6}+1$

5. The function $f(x)=-0.5 x^{2}+4 x+1$ shown on the grid. The function $g(x)$ is defined by $g(x)=f(x)-5$.
(a) Give a formula for $g(x)$ in terms of x.
(b) How will the graph of $g(x)$ compare to the graph of $f(x)$?

(c) Draw a graph of $g(x)$ on the grid.
(d) Give an estimate for the larger solution to the equation $g(x)=0$. Explain how you produced your estimate.

APPLICATIONS

6. A lemonade stand is operating over a 10-day period. Its sales, in dollars, for a given day since opening is given by the function $s(t)$ shown graphed below. The lemonade stand must spend $\$ 10$ per day on materials. Because of this, the profit they earn is given by the function $p(t)=s(t)-10$.
(a) What is the value of $p(4)$? Justify.
(b) Graph $p(t)$ on the same grid.
(c) What is the maximum profit the lemonade stand makes?
(d) For what value of t is $p(t)=0$?

(e) Over what interval of days is the profit at least $\$ 6$ per day? Justify.
