Name: \qquad Date: \qquad

The Rational Numbers
 N-GEN MATH ${ }^{\circledR} 7$

There are many types of numbers that you will learn about in math. The easiest types of numbers to understand are the whole numbers and the integers. The sets of both are shown below.

The Whole Numbers and Integers

Whole Numbers: $\{0,1,2,3,4,5, \ldots\} \quad$ Integers: $\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}$

Exercise \#1: One of the following two statements is true. Circle it based on the sets shown above.
I. Every whole number is also an integer.
II. Every integer is also a whole number.

Exercise \#2: We should feel comfortable plotting integers on the number line. Do so with each of the following and label using its letter.

$$
\mathrm{A}=7 \quad \mathrm{~B}=-4 \quad \mathrm{C}=0 \quad \mathrm{D}=12 \quad \mathrm{E}=-10
$$

Exercise \#3: What is the distance (only a positive number) between:
(a) points A and D ?
(b) points B and E ?
(c) points D and E?

Of course, there are many types of numbers that are not integers. Every point (or location) on the number line above represents some real number.

Exercise \#4: Give four numbers that are not integers.

Numbers that include fractions or decimals that terminate or repeat are known as rational numbers because they are, by definition, the ratio of two integers.

The Rational Numbers

Any number that can be expressed as the ratio of two integers is known as a rational number. All rational numbers can be written as $\frac{p}{q}$ or $-\frac{p}{q}$ where p and q are whole numbers.

Exercise \#5: For each of the following numbers, write in their rational form, i.e. as the ratio of two whole numbers.
(a) $2 \frac{3}{5}$
(b) 0.7
(c) 3.87
(d) 5

So, we see that each whole number is also an integer. And each integer is also a rational number. Rational numbers can be plotted just as integers can, although their exact location may be harder to place.

Exercise \#6: Plot each of the following rational numbers on the number line below.

$$
\mathrm{A}=-3.4 \quad \mathrm{~B}=2.5 \quad \mathrm{C}=\frac{10}{3} \quad \mathrm{D}=-\frac{21}{5}
$$

Recall that we can compare rational numbers using greater than, $>$, less than, $<$, or equal, $=$, comparisons. Remember that one number is greater than another if it lies to the right of it on the number line.

Exercise \#7: For each of the following, place a $>,<$, or $=$ symbol in each square to make the statement true.
(a) $4.99 \square 5.01$
(b) $4.37 \square-10.75$
(c) $\frac{24}{3} \square \frac{16}{2}$
(d) $-1.8 \square-5.65$
\qquad

The Rational Numbers N-GEN MATH ${ }^{\circledR} 7$ HOMEWORK

Fluency

1. Circle all numbers below that are whole numbers.
(a) 15
(b) -4
(c) $\frac{4}{3}$
(d) $\frac{8}{2}$
(e) $-\frac{1}{2}$
(f) 7
(g) 1.75
(h) 0
2. Circle all the numbers below that are integers.
(a) $\frac{5}{2}$
(b) -4
(c) 17
(d) -2.5
(e) $\frac{30}{6}$
(f) $12 . \overline{6}$
(g) -25
(h) -1
3. If you were asked to circle numbers in 1 and 2 that are rational numbers which of the following would you circle:
I. All of them
II. None of them
III. Some of them, but not all.
4. Which of the following is not equal to the rational number $\frac{7}{4}$?
(1) $\frac{14}{8}$
(3) 1.75
(2) $\frac{10}{7}$
(4) $1 \frac{3}{4}$
5. Plot each of the following rational numbers on the number line below. Convert any improper fraction into either a mixed number or decimal and mark its location as closely as you can.
$\mathrm{A}=4.5$
$B=-2$
$\mathrm{C}=\frac{2}{3}$
D $=-4.8$
$E=\frac{14}{5}$
$\mathrm{F}=-\frac{7}{2}$
$\mathrm{G}=\frac{4}{3}$

6. For each of the following pairs of rational numbers, place a greater than symbol, $>$, a less than symbol, $<$, or an equality symbol, $=$, in the square to make the statement true.
(a) 24
 14
(b) $1.3 \square-14.6$
(c) $-5 \square 0$
(d) $\frac{7}{3} \square \frac{13}{5}$
(e) $-\frac{15}{3} \square-5$
(f) $-8 \square-2$
(g) $\frac{8}{3} \square \frac{40}{15}$
(h) $0 \square-\frac{1}{2}$
(i) $-11.5 \square-\frac{31}{4}$
7. Which of the following numbers in not greater than -7.4.
(1) -8.1
(3) 3
(2) -2
(4) 0
