\qquad

Horizontal Stretching of Functions Common Core Algebra I

In the last lesson we saw how multiplying a function by a constant stretched (or compressed) the function's outputs, and thus its graph. This was a vertical stretch because it only affected the vertical (output) component of the function for a given input. In today's lesson, we will see what happens to a function when you first manipulate its input.

Exercise \#1: The function $f(x)$ is shown on the graph below. Selected points are shown as reference. The function $g(x)$ is defined by $g(x)=f(2 x)$. Notice that the multiplication by 2 happens before f is even evaluated. This is tricky!
(a) Find the values of each of the following. Carefully follow the rule for $g(x)$ and show your work.
$g(2)=$
$g(3)=$
$g(-2)=$ $g(-4)=$
$g(0)=$

$$
g(-3)=
$$

(b) Given the definition of $g(x)$, why can we not find a value for $g(4)$? Explain.

(c) State points that must lie on the graph of $g(x)$ based on your work in (a).
(d) Graph the function $g(x)$ based on your work from (b). Then, state the domain and range of both the original function, $f(x)$ and our new function $g(x)$. What remained the same? What changed?

Original Function: $f(x)$
Domain:
Range:
New Function: $g(x)$
Domain:
Range:
(e) Describe what happened to the graph of $f(x)$ when we multiplied the function's input by 2 .

Notice how the horizontal stretch worked almost counter to what we would have thought. In other words, when we multiplied the x-value by 2 , it compressed our graph by a factor of 2 . The opposite would also occur.

Exercise \#2: The function $f(x)=|x|-3$ is shown on the graph below. The function $g(x)$ is defined by the formula $g(x)=\left|\frac{1}{2} x\right|-3$.
(a) Use your graphing calculator to produce a table of values for $g(x)$ and graph it on the grid to the right.

x									
y									

(b) What was the effect on the graph of $f(x)$ when we multiplied the input by $\frac{1}{2}$?

We can certainly combine the effects of both a vertical stretch and a horizontal stretch. This is harder, but if you can identify the various transformations, then the new function's graph can often be produced from the older function's fairly easily.

Exercise \#3: The graph of $f(x)$ is shown on the grid below. A new function $h(x)$ is defined by:

$$
h(x)=2 f(3 x)
$$

(a) Evaluate $h(1)$. What point must lie on the graph of $h(x)$ based on this calculation?
(b) Describe the transformations that must be done to the graph of $f(x)$ to produce the graph of $g(x)$.
(c) Graph $g(x)$ by plotting the three major points.

\qquad

Horizontal Stretching of Functions Common Core Algebra I Homework

Fluency

1. The function $f(x)$ is shown graphed on the axes below with selected points highlighted. Two additional functions are defined as:
$g(x)=f(2 x)$ and $h(x)=2 f(x)$

Graph both $g(x)$ and $h(x)$ on the same grid and label them.

State the domain of $g(x)$ only:

2. The quadratic function $f(x)$ is shown graphed to the right in bold. Three other functions are defined below with equations based on $f(x)$. Label each graph with its appropriate function.
$g(x)=-f(x)$
$h(x)=f(2 x)$
$k(x)=f\left(\frac{1}{2} x\right)$

3. Which of the following formulas would indicate that the graph of $h(x)$ was stretched in the horizontal direction by a factor of 3 ?
(1) $h(3 x)$
(3) $h(x)+3$
(2) $h\left(\frac{1}{3} x\right)$
(4) $3 h(x)$
4. The parabola $f(x)=x^{2}-16$ is shown graphed on the grid below with certain points highlighted. The function $g(x)$ is given by $g(x)=f(2 x)$.
(a) What is the range of the function $f(x)$?
(b) State the zeroes of $f(x)$.
(c) The function $g(x)$ will have the equation $g(x)=(2 x)^{2}-16$. Using your calculator, create a graph of $g(x)$ on the grid given.
(d) State the zeroes of $g(x)$. Why does this answer make sense in light of (b) ?

REASONING

5. The function $f(x)$ is shown below. Another function is defined by the formula:

$$
g(x)=f(2 x)+3
$$

(a) Evaluate each of the following. Show your work.

$$
\begin{array}{ll}
g(-3)= & g(-1)= \\
g(2)= & g(3)=
\end{array}
$$

(b) Plot a graph of $g(x)$ based on (a).
(c) What two transformations occurred to the graph of $f(x)$ to produce the graph of $g(x)$? State them and their order.

