Name:

Trace

Two triangles will be **congruent** if **they have the same size and shape**. We can now say, given our studies of rigid motions, that:

TRIANGLE CONGRUENCE

Two triangles in the plane are **congruent** if a sequence of rigid motions can be found that make the vertices of one triangle coincide with the vertices of the other (or lie on top of each other).

Exercise #1: In the diagram below we know the following:

Given: \overline{ADC} , $\overline{BD} \perp \overline{AC}$ and $\overline{AD} \cong \overline{CD}$.

Prove: $\triangle BDC \cong \triangle BDA$

- (a) Based on the givens and the diagram, what rigid motion do you think will be used to map ΔBDC onto ΔBDA ? Try the transformation with tracing paper.
- (b) Prove (using rigid motions): $\Delta BDC \cong \Delta BDA$.

Given: \overline{ACD} , \overline{BCE} with C being the midpoint of both \overline{AD} and \overline{BE} .

Prove (using rigid motions): $\triangle ABC \cong \triangle DEC$

These transformational geometry proofs can be challenging, even in fairly simple situations.

Exercise #3: In the following diagram it is known that \overline{AB} bisects both $\angle CAD$ and $\angle CBD$. This will be enough, using rigid motions, to show that $\triangle ACB \cong \triangle ADB$.

(d) Since D' must fall on both \overrightarrow{AC} and \overrightarrow{BC} , where does this tell you that it must lie? Explain.

(e) Explain why do we now know that $\triangle ACB \cong \triangle ADB$

Exercise #4: Given that line *r* is the perpendicular bisector of \overline{BC} and \overline{AD} , which of the following would be used to justify that $\triangle ABE$ is congruent to $\triangle DCE$?

- (1) a reflection of $\triangle ABE$ across the line AD
- (2) a 180° rotation of $\triangle ABE$ about point *E*
- (3) a translation of $\triangle ABE$ in the direction of \overline{BC} by a distance of BE.
- (4) a reflection of $\triangle ABE$ across line *r*.

CONGRUENCE REASONING ABOUT TRIANGLES COMMON CORE GEOMETRY HOMEWORK

MEASUREMENT AND CONSTRUCTION

1. Are $\triangle ABC$ and $\triangle DEF$ pictured below congruent? Use tracing paper to decide.

- (b) A reflection of $\triangle ABD$ across \overline{AB} leaves what points unmoved ("fixed")? Explain why they don't move.
- (c) The image of D under the reflection in \overline{AB} must fall on C. This needs both $m \angle CBA = m \angle DBA$ and BD = BC. Explain why.
- (d) Explain why this reflection in \overline{AB} now shows that $\triangle ADB \cong \triangle ACB$.

3. In the following diagram $\triangle ABC$ and $\triangle ADE$ are given with the following known:

Given: $\overline{AB} \perp \overline{AD}$, $\overline{AC} \perp \overline{AE}$, AB = AD, and AC = AE

Give a rigid motion transformation that shows that $\triangle ABC \cong \triangle ADE$. Give both the rigid motion and explain why it maps $\triangle ABC$ onto $\triangle ADE$.

4. In the following diagram $\triangle ABC$ and $\triangle ADC$ are drawn with a shared side of \overline{AC} . We are given the following information:

Given: AB = AD and CB = CD.

(a) Point A is equidistant from points B and D based on the givens. So is point C. That means that \overline{AC} has what special relationship to segment \overline{BD} ? Explain. (See Unit #2.Lesson #4)

- (b) If we reflect $\triangle ABC$ across \overline{AC} then what points stay fixed? Why?
- (c) Why must point B fall on D after a reflection in \overline{AC} ? (See part a).
- (d) Why does a reflection of $\triangle ABC$ in \overline{AC} show that $\triangle ABC \cong \triangle ADC$?

