\qquad

Congruence Reasoning About Triangles Common Core Geometry

Two triangles will be congruent if they have the same size and shape. We can now say, given our studies of rigid motions, that:

Triangle Congruence

Two triangles in the plane are congruent if a sequence of rigid motions can be found that make the vertices of one triangle coincide with the vertices of the other (or lie on top of each other).

Exercise \#1: In the diagram below we know the following:

Given: $\overline{A D C}, \overline{B D} \perp \overline{A C}$ and $\overline{A D} \cong \overline{C D}$.

Prove: $\triangle B D C \cong \triangle B D A$
(a) Based on the givens and the diagram, what rigid motion do you think will be used to map $\triangle B D C$ onto $\triangle B D A$? Try the transformation with tracing paper.

(b) Prove (using rigid motions): $\triangle B D C \cong \triangle B D A$.

Exercise \#2: In the diagram below we know the following:
Given: $\overline{A C D}, \overline{B C E}$ with C being the midpoint of both $\overline{A D}$ and $\overline{B E}$.

Prove (using rigid motions): $\triangle A B C \cong \triangle D E C$

These transformational geometry proofs can be challenging, even in fairly simple situations.
Exercise \#3: In the following diagram it is known that $\overline{A B}$ bisects both $\angle C A D$ and $\angle C B D$. This will be enough, using rigid motions, to show that $\triangle A C B \cong \triangle A D B$.
(a) What angle pairs must be congruent based on what is known? Explain. Mark these pairs on the diagram.
(b) If $\triangle A D B$ was reflected in $\overline{A B}$, what two points would not move (called "fixed points")? Why wouldn't they?
(c) If $\triangle A D B$ was reflected in $\overline{A B}$, why must the image of point D, i.e. D^{\prime}, fall on both rays $\overrightarrow{A C}$ and $\overrightarrow{B C}$?

(d) Since D^{\prime} must fall on both $\overrightarrow{A C}$ and $\overrightarrow{B C}$, where does this tell you that it must lie? Explain.
(e) Explain why do we now know that $\triangle A C B \cong \triangle A D B$

Exercise \#4: Given that line r is the perpendicular bisector of $\overline{B C}$ and $\overline{A D}$, which of the following would be used to justify that $\triangle A B E$ is congruent to $\triangle D C E$?
(1) a reflection of $\triangle A B E$ across the line $\overrightarrow{A D}$
(2) a 180° rotation of $\triangle A B E$ about point E
(3) a translation of $\triangle A B E$ in the direction of $\overrightarrow{B C}$ by a distance of $B E$.
(4) a reflection of $\triangle A B E$ across line r.

\qquad

Congruence Reasoning About Triangles
 Common Core Geometry Homework

Measurement and Construction

1. Are $\triangle A B C$ and $\triangle D E F$ pictured below congruent? Use tracing paper to decide.

REASONING

2. In the diagram shown the following is known:

Given: $\overline{A B}$ bisect $\angle C B D$ and $B D=B C$.
Prove: $\triangle A D B \cong \triangle A C B$ using rigid motion reasoning

(b) A reflection of $\triangle A B D$ across $\overline{A B}$ leaves what points unmoved ("fixed")? Explain why they don't move.
(c) The image of D under the reflection in $\overline{A B}$ must fall on C. This needs both $m \angle C B A=m \angle D B A$ and $B D=B C$. Explain why.
(d) Explain why this reflection in $\overline{A B}$ now shows that $\triangle A D B \cong \triangle A C B$.
3. In the following diagram $\triangle A B C$ and $\triangle A D E$ are given with the following known:

Given: $\overline{A B} \perp \overline{A D}, \overline{A C} \perp \overline{A E}, A B=A D$, and $A C=A E$

Give a rigid motion transformation that shows that $\triangle A B C \cong \triangle A D E$. Give both the rigid motion and explain why it maps $\triangle A B C$ onto $\triangle A D E$.

4. In the following diagram $\triangle A B C$ and $\triangle A D C$ are drawn with a shared side of $\overline{A C}$. We are given the following information:

Given: $A B=A D$ and $C B=C D$.
(a) Point A is equidistant from points B and D based on the givens. So is point C. That means that $\overline{A C}$ has what special relationship to segment $\overline{B D}$? Explain. (See Unit \#2.Lesson \#4)
(b) If we reflect $\triangle A B C$ across $\overline{A C}$ then what points stay fixed? Why?
(c) Why must point B fall on D after a reflection in $\overline{A C}$? (See part a).

(d) Why does a reflection of $\triangle A B C$ in $\overline{A C}$ show that $\triangle A B C \cong \triangle A D C$?

