\qquad

RATIONALIZING FRACTIONS Algebra 2 WITH Trigonometry

For various historical reasons, a fraction is not considered "simplified" if it contains an irreducible square root in its denominator. The process of rationalizing, thus, is to rewrite a fraction so that it has an equivalent value, but without an irrational number in the denominator. The key to rationalizing fractions with monomial denominators lies in the first exercise.

Exercise \#1: Simplify each of the following products without a calculator.
(a) $\sqrt{3} \cdot \sqrt{3}$
(b) $\sqrt{7} \cdot \sqrt{7}$
(c) $\sqrt{113} \cdot \sqrt{113}$
(d) $\sqrt{a} \cdot \sqrt{a}$, for $a \geq 0$

Now, to rationalize fractions with monomial, irrational denominators, we simply multiply by the number 1 (the Multiplicative Identity Property) in a very specific form.

Exercise \#2: Rewrite each of the following fractions in simplest form.
(a) $\frac{2}{\sqrt{3}}$
(b) $\frac{4}{\sqrt{2}}$
(c) $\frac{5}{3 \sqrt{5}}$
(d) $\sqrt{\frac{4}{7}}$

Exercise \#3: Which of the following is equivalent to $\sqrt{\frac{1}{2}}$?
(1) $\sqrt{2}$
(3) $\frac{1}{4}$
(2) $\frac{\sqrt{2}}{2}$
(4) $\frac{\sqrt{3}}{2}$

Sometimes the denominator of the fraction is binomial in nature. The key to rationalizing these types of expressions comes in understanding the results of multiplying the two members of a conjugate pair.

Exercise \#4: Find each of the following products.
(a) $(6-\sqrt{5})(6+\sqrt{5})$
(b) $(2-\sqrt{7})(2+\sqrt{7})$
(c) $(\sqrt{10}+\sqrt{2})(\sqrt{10}-\sqrt{2})$

Because the product of the two members of a conjugate pair always follow the pattern noted below, no expression involving a square root will remain.

Conjugate Pair Products

The two binomials $(a+b)$ and $(a-b)$ are known as conjugate pairs. Their product is always:

$$
(a+b)(a-b)=a^{2}-b^{2}
$$

Exercise \#5: Rewrite each of the following fractions in simplest form. Be sure to both rationalize and reduce the fractions.
(a) $\frac{1}{3-\sqrt{7}}$
(b) $\frac{3}{3+\sqrt{3}}$
(c) $\frac{2}{4-\sqrt{6}}$

These expressions tend to become more complicated to rationalize when both the numerator and denominator are binomials. Still, simplifying these fractions is dependent on careful, but predicable, arithmetic steps.

Exercise \#6: Rewrite each of the following fractions in simplest form. Be sure to both rationalize and reduce the fractions.
(a) $\frac{3-\sqrt{5}}{3+\sqrt{5}}$
(b) $\frac{3+\sqrt{6}}{6-\sqrt{6}}$

Exercise \#7: Which of the following is equivalent to $\frac{10-\sqrt{2}}{4+\sqrt{2}}$?
(1) $3-\sqrt{2}$
(3) $\frac{19-7 \sqrt{2}}{7}$
(2) $3+\sqrt{2}$
(4) $\frac{5-2 \sqrt{2}}{2}$
\qquad

RATIONALIZING FRACTIONS
 Algebra 2 WITH Trigonometry - Homework

SkILLS

1. Find each of the following products. Use facts about conjugate pairs to make the multiplication faster.
(a) $(8-\sqrt{2})(8+\sqrt{2})$
(b) $(\sqrt{15}+\sqrt{5})(\sqrt{15}-\sqrt{5})$
(c) $(2 \sqrt{2}+1)(2 \sqrt{2}-1)$
2. Write each of the following fractions in simplest form. Be sure to both rationalize and reduce the fraction.
(a) $\frac{1}{\sqrt{5}}$
(b) $\frac{2}{\sqrt{6}}$
(c) $\frac{15}{\sqrt{5}}$
(d) $\frac{3}{2 \sqrt{3}}$
(e) $\frac{12}{\sqrt{10}}$
(f) $\frac{4}{\sqrt{32}}$
(g) $\sqrt{\frac{1}{3}}$
(h) $\sqrt{\frac{2}{5}}$
3. Write each of the following fractions in simplest form. Be sure to both rationalize and reduce the fraction.
(a) $\frac{2}{2-\sqrt{2}}$
(b) $\frac{4}{\sqrt{10}-\sqrt{2}}$
(c) $\frac{6}{3+\sqrt{5}}$
4. Rewrite each of the following fractions in simplest form. Be sure to both rationalize and reduce the fractions.
(a) $\frac{\sqrt{2}+1}{\sqrt{2}-1}$
(b) $\frac{9+\sqrt{3}}{6-\sqrt{3}}$
5. Which of the following is equivalent to $\sqrt{\frac{16}{3}}$?
(1) $\frac{4}{3}$
(3) $\frac{4 \sqrt{3}}{3}$
(2) $4 \sqrt{3}$
(4) $\frac{2 \sqrt{3}}{3}$
6. Rewritten without an irrational denominator, the fraction $\frac{6}{5-\sqrt{7}}$ is equal to
(1) $\frac{5+\sqrt{7}}{3}$
(3) $\frac{5-\sqrt{7}}{18}$
(2) $2 \sqrt{7}+5$
(4) $\frac{6 \sqrt{7}-5}{3}$
7. The expression $\frac{8-\sqrt{6}}{4-\sqrt{6}}$ can be expressed as
(1) 1
(3) $\frac{2+3 \sqrt{6}}{5}$
(2) $\frac{19+2 \sqrt{6}}{5}$
(4) $\frac{13+2 \sqrt{6}}{5}$
