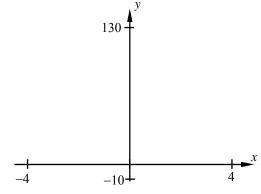
Name:

Date:


INTRODUCTION TO EXPONENTIAL FUNCTIONS COMMON CORE ALGEBRA I

So far we have concentrated on **linear functions** which are characterized by having a **constant rate of change**. In the last lesson, we looked at **exponential growth and decay**. In this lesson we will more formally introduce the concept of an **exponential function**.

Exercise #1: Consider the exponential function $f(x) = 8(2)^x$. Answer the following.

- (a) Evaluate each of the following and indicate what point must lie on the graph of f(x) based on each:
 - (i) f(2) = (ii) f(0) = (iii) f(-1) =
- (b) Calculate the average rate of change of f over the interval $-1 \le x \le 0$.
- (c) Calculate the average rate of change over the interval $0 \le x \le 2$.
- (d) What does comparing answers from (b) and (c) tell you about this function? Explain.
- (e) Using your calculator, draw a sketch of this function on the axes below using the window indicated.

Exponential functions are all about multiplication. The basic form of an exponential function is given below.

EXPONENTIAL FUNCTIONS

A general exponential function has the form: $y = a(b)^x$, where *a* is the *y*-intercept and *b* is the base or multiplying factor. Sometimes *b* is known as the growth or decay factor.

Let's work some more with exponential functions to develop a better sense for them.

Exercise #2: Consider the function $g(x) = 54\left(\frac{1}{3}\right)^x$.

- (a) Evaluate g(0). What point does this indicate on the graph of g?
- (c) Using your graphing calculator, sketch a graph of this function using the WINDOW $-2 \le x \le 4$ and $-10 \le y \le 100$. Mark the *y*-intercept.
 - _____x

- (b) Without the use of your calculator, determine the values of g(1) and g(2).
- (d) Why is this exponential function always **decreasing** while the one in Exercise #1 is always increasing?

INCREASING VS. DECREASING EXPONENTIALS $y = a(b)^{x}$ will **increase** if ______ (grow) $y = a(b)^{x}$ will **decrease** if ______ (decay)

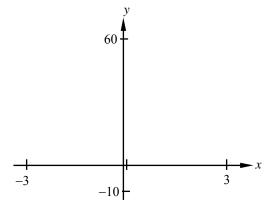
Exercise #3: For each of the following exponential functions, give its *y*-intercept and tell whether it is increasing or decreasing.

(a) $y = 8\left(\frac{2}{3}\right)^x$ (b) $f(x) = 125(1.5)^x$ (c) $P(t) = 56\left(\frac{3}{2}\right)^t$

The equations of exponential functions are relatively easy to determine, if you understand this lesson so far. See what you can do in the next exercise.

Exercise #4: Find the equation of the exponential function, in $y = a(b)^x$ form, for the function given in the table below. Show or explain your thinking.

x	0	1	2	3	4
у	10	30	90	270	810



INTRODUCTION TO EXPONENTIAL FUNCTIONS COMMON CORE ALGEBRA I HOMEWORK

FLUENCY

- 1. Consider the exponential function $f(x) = 10(2)^{x}$.
 - (a) Find the value of f(0). What point does this represent on the graph of y = f(x)?
- (b) Is this an increasing or decreasing exponential function? How can you tell based on its equation?
- (c) Is this function's average rate of change over the interval $-1 \le x \le 2$ greater or less than that of the linear function g(x) = 10x + 7? Justify.
- (d) Using your calculator, sketch a graph of this function on the axes shown below. Use the window indicated. Mark the *y*-intercept.

2. Which of the following is a decreasing exponential function whose *y*-intercept is 20?

(1)
$$y = 20\left(\frac{4}{3}\right)^x$$
 (3) $y = -2x + 20$

(2)
$$y = 20\left(\frac{1}{2}\right)^x$$
 (4) $y = \left(\frac{1}{3}\right)^x + 20$

3. Which of the following functions would best describe the data in the table?

(1) $y = 10x + 2$	(3) $y = 5(2)^{x}$	x	0	1	2	3	4
(2) $y = 8x + 2$	$(4) y = 2(5)^x$	у	2	10	50	250	1250

4. Graphing a basic exponential can be challenging because of how quickly they grow (or decay). In this exercise, we will graph one of the most basic.

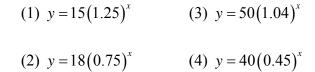
$$f(x) = 2^x$$

(a) Evaluate each of the following and state the coordinate point that occurs on the graph of f(x) based on the calculation.

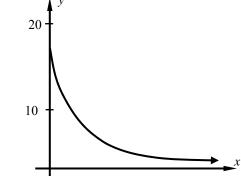
$$f(0) = \qquad \qquad f(1) =$$

$$f(2) = \qquad \qquad f(3) =$$

(b) Evaluate each of the following. Remember your facts about negative exponents and give the point on the graph of f(x).

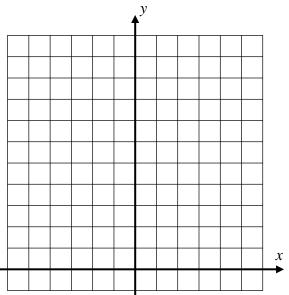

$$f(-1) = f(-2) = f(-3) =$$

- (c) Using the points you found in (a) and (b), graph this function for the domain interval $-3 \le x \le 3$.
- 5. Classify each of the following exponential functions as either increasing or decreasing and give the value of their *y*-intercepts.


(a)
$$y = 125(1.25)^x$$
 (b) $y = 22\left(\frac{3}{4}\right)^x$ (c) $y = 256\left(\frac{5}{2}\right)^x$

REASONING

6. Which of the following could be the equation of the exponential function shown graphed below? Explain your choice.



Explanation:

