\qquad

Right Triangles and Similarity Common Core Geometry

In our next unit, we will extensively study similar right triangles as they will be the basis for what is known as trigonometry. But, in this lesson we will look at an interesting example of how similar right triangls can be formed. First, though, we need to understand an important fact about right triangle similarity.

Exercise \#1: Given the two right triangles shown below, why do we know that $\triangle A B C$ is similar to $\triangle D E F$?

Right Triangle Similarity

Any two right triangles with a pair of congruent acute angles will be similar.
Exercise \#2: In the following diagram of right triangle $\triangle A B C$, the altitude has been drawn from vertex C to the hypotenuse $\overline{A B}$, creating two additional right triangles, $\triangle A C D$ and $\triangle C B D$.
(a) Why can you argue that $\triangle A B C \sim \triangle A C D$? Likewise $\triangle A B C \sim \triangle C B D$?
(b) Based on (a), why can you argue that $\triangle A C D \sim \triangle C B D$?
(c) Draw the two smaller triangles in the same orientation as $\triangle A B C$.

(d) If $A D=8$ and $B D=2$ then find the length of $\overline{C D}$ and $\overline{B C}$.

Express all answers in simplest form.

These problems can be particularly tricky, especially because there are three similar right triangles and two of the three lie inside the larger one.

Exercise \#3: In the diagram shown, altitude $\overline{R U}$ has been drawn to hypotenuse $\overline{S T}$ from right angle R.
(a) Draw the two smaller triangles in the same orientation as $\triangle R S T$.
(b) If $R U=10$ and $T U=5$, then find the length of $\overline{U S}$.

Many times, these problems are phrased without a picture. A firm control over the language and the similar triangles is critical to setting up the ratio correctly.

Exercise \#4: In $\triangle M N P$, where P is a right angle, the altitude $\overline{P L}$ is drawn to hypotenuse $\overline{M N}$. If $M L=9$ and $L N=3$, then find the length of $\overline{P N}$.

Never forget that two figures are similar only if there is a similarity transformation that maps one figure onto the other. Let's try to find one for these types of right triangle scenarios.

Exercise \#5: In the diagram shown, altitude $\overline{T W}$ has been drawn to hypotenuse $\overline{R S}$ as shown. By the AngleAngle Similarity Theorem $\triangle R S T$ is similar to $\Delta R T W$. Describe a similarity transformation that would map $\Delta R T W$ onto $\Delta R S T$. Be specific. Use tracing paper to help visualize the rigid motion components.

\qquad

Right Triangles and Similarity Common Core Geometry Homework

Measurement and Construction

1. Given right triangle $A B C$ below with right angle C, construct the altitude $\overline{C D}$ to hypotenuse $\overline{A B}$. Leave all construction marks. If you can't recall how to do this construction, see Unit \#4.Lesson \#3.

Problem Solving

2. In the diagram of $\triangle D E F$, the altitude from right angle $\angle D F E$ has been drawn to $\overline{D E}$. If $D G=4$ and $G E=8$, then which of the following is the length of $\overline{F G}$?
(1) $4 \sqrt{2}$
(3) 12
(2) $3 \sqrt{10}$
(4) 6

3. In the diagram below, altitude $\overline{N Q}$ has been drawn to hypotenuse $\overline{M P}$ in right triangle $M N P$. Which of the following would equal the ratio of $M N$ to $N Q$?
(1) the ratio of $N Q$ to $N P$
(2) the ratio of $N P$ to $M N$
(3) the ratio of $N P$ to $P M$
(4) the ratio of $N P$ to $P Q$

4. In right triangle $Q R S, \angle R$ is a right angle. The altitude $\overline{R T}$ is drawn to hypotenuse $\overline{Q S}$. If $Q R=20$ and $Q S=25$ then find the length of $\overline{Q T}$. Show how you arrived at your answer.
5. If the altitude drawn to the hypotenuse of a right triangle $E F G$ partitions it into two segments of lengths 8 and 10 , then find the length of the longer leg of $\triangle E F G$ in simplest radical form.
6. In the diagram shown, altitude $\overline{A C}$ is drawn from a right angle to $\overline{B D}$ in such a way that $B C: D C=4: 1$. Find the length of $\overline{D C}$ algebraically. Show your work below.

REASONING

7. In the diagram of right triangle $A B C$, the altitude to the hypotenuse, $\overline{C D}$, has been drawn.
(a) Justify why $\triangle B C D$ must be similar to $\triangle C A D$.
(b) Give a similarity transformation that would map $\triangle B C D$ onto $\triangle C A D$. Be as specific as possible. Use tracing paper to help.

