#### Name: \_\_\_\_\_

# **INTRODUCTION TO LOGARITHMS ALGEBRA 2 WITH TRIGONOMETRY**

Exponential functions are of such importantance to mathematics that their inverses, functions that "reverse" their action, are important themselves. These functions, known as logarithms, will be introduced in this lesson.

**Exercise** #1: The function  $f(x) = 2^x$  is shown graphed on the axes

below along with its table of values.

| X            | -3            | -2            | -1            | 0 | 1 | 2 | 3 |
|--------------|---------------|---------------|---------------|---|---|---|---|
| $f(x) = 2^x$ | $\frac{1}{8}$ | $\frac{1}{4}$ | $\frac{1}{2}$ | 1 | 2 | 4 | 8 |

(a) Is this function one-to-one? Explain your answer.

- (b) Based on your answer from part (a), what must be true about the inverse of this function?
- (c) Create a table of values below for the inverse of  $f(x) = 2^x$  and plot this graph on the axes given.

| x           |  |  |  |  |
|-------------|--|--|--|--|
| $f^{-1}(x)$ |  |  |  |  |



(d) What would be the first step to find an equation for this inverse algebraically? Write this step down and then stop.

<u>Defining Logarithmic Functions</u> – The function  $y = \log_b x$  is the name we give the inverse of  $y = b^x$ . For example,  $y = \log_2 x$  is the inverse of  $y = 2^x$ . Based on *Exercise* #1(d), we can write an equivalent exponential equation for each logarithm as follows:

$$y = \log_b x$$
 is the same as  $b^y = x$ 

Based on this, we see that a logarithm gives as its output (y-value) the exponent we must raise b to in order to produce its input (x-value).





*Exercise* #2: Evaluate the following logarithms. If needed, write an equivalent exponential equation. Do as many as possible without the use of your calculator.

(a)  $\log_2 8$  (b)  $\log_4 16$  (c)  $\log_5 625$  (d)  $\log_{10} 100,000$ 

(e) 
$$\log_6\left(\frac{1}{36}\right)$$
 (f)  $\log_2\left(\frac{1}{16}\right)$  (g)  $\log_5\sqrt{5}$  (h)  $\log_3\sqrt[5]{9}$ 

It is critically important to understand that logarithms **give exponents as their outputs**. We will be working for multiple lessons on logarithms and a basic understanding of their inputs and outputs is critical.

*Exercise* #3: If the function  $y = \log_2(x+8)+9$  was graphed in the coordinate plane, which of the following would represent its *y*-intercept?

| (1) 12 | (3) 8 |
|--------|-------|
|--------|-------|

| (2) | 13 | (4) 9 |
|-----|----|-------|
| (-/ |    | ( ) > |

*Exercise* #4: Between which two consecutive integers must log<sub>3</sub> 40 lie?

- (1) 1 and 2 (3) 3 and 4
- (2) 2 and 3 (4) 4 and 5

<u>Calculator Use and Logarithms</u> – Most calculators only have two logarithms that they can evaluate directly. One of them,  $\log_{10} x$ , is so common that it is actually called the **common log** and typically is written without the base 10.

 $\log x = \log_{10} x$  (The Common Log)

*Exercise* **#5**: Evaluate each of the following using your calculator.

(a)  $\log 100$  (b)  $\log \left(\frac{1}{1000}\right)$  (c)  $\log \sqrt{10}$ 



# **INTRODUCTION TO LOGARITHMS ALGEBRA 2 WITH TRIGONOMETRY - HOMEWORK**

### **SKILLS**

- 1. Which of the following is equivalent to  $y = \log_7 x$ ?
  - (1)  $y = x^7$ (3)  $x = 7^{y}$
  - (2)  $x = y^7$  (4)  $y = x^{\frac{1}{7}}$
- 2. If the graph of  $y = 6^x$  is reflected across the line y = x then the resulting curve has an equation of
  - (1)  $y = -6^x$ (3)  $x = \log_6 y$
  - (2)  $y = \log_6 x$  (4)  $x = y^6$
- 3. The value of  $\log_5 167$  is closest to which of the following? Hint guess and check the answers.
  - (1) 2.67(3) 4.58(2) 1.98 (4) 3.18
- 4. Which of the following represents the y-intercept of the function  $y = \log(x+1000) 8$ ?
  - (1) 8(3) 3
  - (2) 5(4) 5
- 5. Determine the value for each of the following logarithms. (Easy)
  - (b)  $\log_7 49$ (c)  $\log_3 6561$ (a)  $\log_2 32$ (d)  $\log_4 1024$
- 6. Determine the value for each of the following logarithms. (Medium)
  - (c)  $\log_5(\frac{1}{25})$ (d)  $\log_7 \left( \frac{1}{343} \right)$ (a)  $\log_2(\frac{1}{64})$ (b)  $\log_3(1)$



- 7. Determine the value for each of the following logarithms. Each of these will have non-integer, fractional answers. (Difficult)
  - (d)  $\log_2 \sqrt[5]{4}$ (c)  $\log_5 \sqrt[3]{5}$ (b)  $\log_4 8$ (a)  $\log_4 2$

- 8. Between what two consecutive integers must the value of  $\log_4 7342$  lie? Justify your answer.
- 9. Between what two consecutive integers must the value of  $\log_5(\frac{1}{500})$  lie? Justify your answer.

#### **APPLICATIONS**

10. In chemistry, the pH of a solution is defined by the equation pH = -log(H) where H represents the concentration of hydrogen ions in the solution. Any solution with a pH less than 7 is considered acidic and any solution with a pH greater than 7 is considered basic. Fill in the table below. Round your pH's to the nearest *tenth* of a unit.

| Substance    | Concentration<br>of Hydrogen | рН | Basic or<br>Acidic? |
|--------------|------------------------------|----|---------------------|
| Milk         | $1.6 \times 10^{-7}$         |    |                     |
| Coffee       | 1.3×10 <sup>-5</sup>         |    |                     |
| Bleach       | $2.5 \times 10^{-13}$        |    |                     |
| Lemmon Juice | $7.9 \times 10^{-2}$         |    |                     |
| Rain         | $1.6 \times 10^{-6}$         |    |                     |

### REASONING

11. Can the value of  $\log_2(-4)$  be found? What about the value of  $\log_2 0$ ? Why or why not? What does this tell you about the domain of  $\log_{h} x$ ?



